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2.  Semiconducting Materials 

      Part – A 

1. State the properties of semiconductor? 

(i) The resistive lies between 10-4 to 0.5 Ωm 

(ii) At 0K, they behave as insulator 

(iii) The conductivity of the semiconductor increases both due to the temperature & impurity 

(iv) They have negative temperature coefficient of resistance 

(v) In semiconductors both the electron and holes are charge carriers and will take part in 

conduction. 

(vi) They are formed by covalent bonds 

2. What are elemental and compound semiconductor? Give Example? 

Elemental semiconductors (Indirect Band gap Semiconductors) are made from single element of 

fourth group elements of the periodic table. 

Eg: Silicon, Germanium 

Semiconductors (Indirect Band gap Semiconductors) which are formed by combining third and 

fifth group elements or second and sixth group elements of the periodic table are called 

compound semiconductors.  

Eg: GaAs, InP, MgO, ZnS, etc., 

 

3. Differentiate Indirect and Direct Band gap semiconductor? 

S.No Indirect Bandgap Semiconductor Direct Bandgap Semiconductor 

1. Heat produced during recombination Photons emitted during recombination 

2. Life time of charge carriers is more Life time of charge carriers is less 

3. 
They are used as diodes, transistors, 

etc., 

They are used as LED’s, Laser diodes 

and IC’s, etc., 

4. Current amplification is more Current amplification is less 

 

4. What is meant by intrinsic and extrinsic semiconductor? 

S.No Intrinsic Semiconductor Extrinsic Semiconductor 

1. It is the purest form of Semiconductor 
It is due to adding  Impurities to 

semiconductor 

2. 
Charge carriers are only due to 

thermal agitation 

Charge carriers are due to impurities 

and thermal agitation 

3. They have low electrical conductivity They have high electrical conductivity 

4. They have low operating temperature They have low operating temperature 

5.  At 0K, Fermi energy lies between At 0K, Fermi energy is close to 
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5. Define Fermi level in semiconductors? Mention its position in intrinsic & Extrinsic 

Semiconductor? 

Fermi level is the energy level which separates the filled and empty energy states 

Intrinsic Semiconductor: Here the Fermi level exactly lies between lowest energy level of 

conduction band and highest energy level of valence band   
2

vc

F

EE
E


  

‘N-type Semiconductor’ the Fermi energy lies exactly between minimum energy level of 

conduction band and donor energy level 
2

dc

F

EE
E


  

‘P-type Semiconductor’ the Fermi energy lies exactly between the acceptor energy level and the 

maximum energy level of valence band  
2

ac

F

EE
E


  

6. Define Hall Effect and Hall Voltage? 

When a conductor carrying a current (I) is placed in a transverse magnetic field (B), a potential 

difference (Electric field) is produced inside the conductor in a direction normal to the 

direction of both the current and magnetic field. This phenomenon is known as Hall Effect and 

the generated voltage is called Hall voltage 

7. State the law of mass action in semiconductor? 

The product of electron & hole concentration remains constant at a given temperature and is equal 

to the square of intrinsic carrier concentration i.e., ni.ne = ni
2 

8. What are the applications of Hall Effect? 

(i) It is used to determine whether the material is p-type or n- type semiconductor 

(ii) It is used to find carrier concentration 

(iii) It is used to determine the sign of the current carrying charges 

(iv) It is used to measure magnetic flux density using a semiconductor sample of known hall 

coefficient. 

9. Mention any four advantages of semiconducting materials? 

(i) It can behave as insulators at 0K and as conductors at high temperature 

(ii) They posses crystalline structure 

valence band  & conduction band  conduction band in ‘n’ type 

semiconductor & close to valence 

band in ‘p’ type semiconductor 
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(iii) N-type & p-type semiconductors are prepared by adding impurities with the charge 

carriers of electrons and holes respectively. 

(iv) They find applications in manufacturing Diodes, Transistors, IC’s , etc., 

10. Write an expression for carrier concentration in intrinsic semiconductor? 

Intrinsic carrier concentration 
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Where *

e
m - Effective mass of electron; *

h
m - Effective mass of hole; Eg – Band gap 

11. Write an expression for carrier concentration in n - type semiconductor? 

Carrier concentration of n – type semiconductor is  
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Where *

e
m - Effective mass of electron; Nd – donor concentration; Ed- donor energy level; 

Ec – Energy level in conduction band 

 

12. Write an expression for carrier concentration in p - type semiconductor? 

Carrier concentration of n – type semiconductor is  
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     Where *

e
m - Effective mass of electron; Na – acceptor concentration; Ea- acceptor energy   

level; Ev – Energy level in valence band. 

13. Define donors and acceptors and state its ionization energy? 

Donors are the penta valent atoms which donates electrons to the pure semiconductors. The 

energy required to donate an electron from donor energy level to the conduction band by ∆E = 

Ec - Ed  is called ionization energy of donor 

Acceptors are the trivalent atoms which accept electrons from the pure semiconductor. The 

energy required to move an electron from valence band to acceptor energy level by ∆E = Ea - 

Ev is called ionization energy of acceptor. 

 

                       Part – B 

 

1. Derive an expression for the intrinsic carrier concentration of a semicondcutor? 

The number of charge carriers per unit volume of the material is called carrier concentration or 

density of charge carriers 
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Electrons in Conduction Band 

The number of electrons whose energy lies in the range   dn     = Z (E) F (E) dE                    (1) 

“E” & “E+dE” in the conduction band is given by  

 

Where Z (E) – density of states in the energy ranges ‘E’ &’E + dE’ 

F (E) – Probability of number of electron occupying in the conduction band 

 

The number of electrons in the conduction band for the entire region is calculated by integrating 

equation (1) from top energy level ‘Ec’ to bottom energy level ‘α’   

 

 

i.e., 



cE

dEEFEZn )()(             (2) 

 

W.K.T, Density of states in the conduction band in the 

   energy range ‘E’ & ‘E+dE’ is given by  Z (E) dE =   dEEm
h

2
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                                                                                                                                    +α 

The bottom edge of the conduction band (Ec)                 E    

 represents the potential energy of an electron at rest. Therefore, Ec 

(E - Ec) is the kinetic energy of the conduction electron at higher EF 

 energy levels. Therefore the equation (3) is modified as Ev 

 Fig(i) -α 
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  Since the electron is moving in a periodic potential, its mass m is replaced by its effective mass 

me
*.  

The probability of electron occupancy is given by 
kTEE Fe
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For all possible temperature, E – EF >>kT, hence in the denominator, kT
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(or)                              
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To solve this, assume the following: 

E - Ec = x E = Ec E = +α 

E = Ec + x Ec - Ec = x α – Ec = x 

dE = dx x = 0 x = α 
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Using gamma function, 
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Substituting eqn (9) in (8), we get,      
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This is the expression of electrons in the conduction band of an intrinsic semiconductor. 

Concentration of holes in the Valence band  

We know that if an electron is transferred from valence band to conduction band, a hole is created 

in valence band. Let dp be the number of holes in the valence band for the energy range               

E & E+dE.  dp = Z (E) (1 – F (E)) dE                               (1) 

Where Z (E) – Density of states in the energy range E & E+dE 

(1 – F(E) ) – Probability of unoccupied (vacant) electron state (presence of hole) in valence band 

(1 – F (E)) dE = 
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E < EF in valence band, (E –EF) has negative quantity & hence in denominator 
kTEE Fe

/)( 
is very 

small when compared with 1, hence 11
/)(


 kTEE Fe  

kTEE FeEF
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   (3) 

Ev is the top level in the valence band and having potential energy of a hole at rest. Hence  

(Ev – E) is the kinetic energy of the hole at level below EV. Hence, 

 Density of states in the valence band is     dEEEm
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 Where, mh
* - effective mass of the hole in the valence band 

Substituting equation (4), (3) in (1), we get,     dEeEEm
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The number of holes in the valence band for the entire energy range is obtained by integrating 

Above equation between the limits –α to EV 
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To solve this, assume the following: 

Ev - E = x E = - α E = Ev 

E = Ev - x Ev -(- α)  = x Ev– Ev = x 

dE = - dx x = α x = 0 
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Substituting eqn (8) in (7), we get,      
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This is the expression of holes in the valence band of an intrinsic semiconductor 

 

Intrinsic Carrier Concentration: 

In intrinsic semiconductor, carrier concentration of electrons in conduction band (ni) =  

carrier concentration of holes in valence band np &  

hence the intrinsic carrier concentration is ni
2= ni x np 
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Where Ec – Ev = Eg is the forbidden energy gap. 

2. Discuss the variation of Fermi Level with temperature in an intrinsic semiconductor? 

We know that, for an intrinsic semiconductor, the density of electron in the conduction band is 

equal to the density of holes in the valence band. 

i.e.,  ni = np           (1) 
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Rearranging, we get, 
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Thus, the Fermi level is located half way between the top of the valence band and bottom of the 

conduction band. Its position is independent of temperature. If  me
* < mh

*,thus, the Fermi level is 

just above the middle of energy gap and its rises slightly with increasing temperature. 

 

3. Discuss the carrier concentration, the variation of Fermi level with temperature in the case 

of n –type semiconductors for low doping level? 

In n –type semiconductor, the donor level is just below the conduction band. Nd denotes the donor 

concentration & Ed represents the energy of the donor level. 

Density of electrons per unit volume in the conduction band is given by 
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here Ef – Fermi energy; Ec – Energy corresponding to the bottom of the conduction band 

Density of the ionized donors = Nd [1 – F (E)]  
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At equilibrium, the density of electrons in conduction band = Density of ionized donors. 

Equating (1) & (2), 
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EF lies more than few kT above donor levels, hence 
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‘1’` in denominator of R.H.S of equation (3) is neglected. 
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(or) 
































2/3

2

*2
2

log
2

h

kTm

N

kT

EEE

e

ddcF



     

        

  (or)  































2/3

2

*2
2

log2

h

kTm

N
kTEEE

e

d

cdF



   

   (or) 


































2/3

2

*2
2

log
22

h

kTm

NkTEE
E

e

dcd

F



      (6) 

Substituting the expression of EF from (6) in (1), we get 

































































































kT

E

h

kTm

NkTEE

h

kTm
n

c

e

dcd

e

2/3

2

*

2

3

2

*

2
2

log
22

exp
2

2





   (7) 


































































































2/3

2

*

2

3

2

*

2
2

log
2

1

2

2
exp

2
2

h

kTm

N

kT

EEE

h

kTm
n

e

dccde




 

Ec 

Ed 

EF 

Ev 

 

n type 

                                                                                                                                                           

 

                  Eg 

Valence Band 

Conduction Band 

Intrinsic 
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 





































































































2/1
2/3

2

*

2/1
2

3

2

*

2
2

log
2

exp
2

2

h

kTm

N

kT

EE

h

kTm
n

e

dcde




 

kTEE

e

d

e cde

h

kTm

N

h

kTm
n

2/)(

4/3

2

*

2/1

2

3

2

*

2

22
2

































       (8) 

Rearranging the expression (8), we have 

(or)        kTEEe

d

cde
h

kTm
Nn

2/

4/3

2

*
2/1 2

2













 

(or)     kTEe

d
e

h

kTm
Nn 2/

4/3

2

*
2/1 2

2 











 

Where ▲E= Ec - Ed is the ionization energy to transfer Energy from donor energy level to the 

conduction band. 

Results: 

(i) The density of electrons is proportional to square root of donor concentration and valid at low 

temperature alone 

(ii) At high temperature, intrinsic carrier concentration must take along with this concentration 

Variation of Fermi level with temperature and impurity concentration 

Fermi level of n – type semiconductor is    


































2/3

2

*2
2

log
22

h

kTm

NkTEE
E

e

dcd

F



             (1) 

At T = 0K, the above equation reduces to 
2

cd

F

EE
E


      (2) 

(i) At 0K, Fermi level lies exactly at the centre of the donor level and bottom of the conduction 

band. 

(ii) As the temperature is gradually increased from a low temperature, the contribution of 

electron increases and at very high temperature, it far exceeds the donor concentration and 

the intrinsic behaviour predominates at higher temperature. 
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(iii) Fermi level shifts downwards when the temperature is increased and finally reaches the 

middle of the band gap (or) intrinsic Fermi level. 

(iv) Further when the concentration of donors increases, the extrinsic behaviour also extends up to 

very high temperature & Fermi level reaches the middle of the band gap only at high 

temperature. 

 

4. Discuss the carrier concentration, the variation of Fermi level with temperature in the case 

of p –type semiconductors for low doping level? 

In p – type semiconductor, the acceptor energy level is just above the valence band. Let Ea 

represents the energy of the acceptor level and Na represents the number of acceptor atoms per 

unit volume. 

Density of holes per unit volume in valence band is given by kTEEh Fve
h

kTm
p

/)(
2

3

2

*2
2













      (1) 

Where Ev is the energy corresponding to the top of the conduction band 

Density of the ionized acceptors = Na F (Ea) =
kTEE

a

Fae

N
/)(

1



          (2) 

Since Ea – EF is very large when compared to kT. 
kTEE Fae

/)( 
is a large quantity and thus ‘1’ in 

denominator of R.H.S of equation(2) is neglected. hence, equation(2), reduces to 

Na F (Ea) =
kTEE

akTEE

a aF

Fa

eN
e

N /)(

/)(




             (3) 

At equilibrium, the density of holes in Valence band = Density of ionized acceptors 

kTEE

a

kTEEh aFFv eNe
h

kTm /)(/)(
2

3

2

*2
2










 
            (4) 
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Taking log on both sides, 

 kTEE

a

kTEEh aFFv eNe
h

kTm /)(/)(
2

3

2

*

log
2

2log
























 
 

(or) 
kT

EE
N

kT

EE

h

kTm
aF

a

Fvh




























log

2
2log

2

3

2

*
          (5) 

Rearranging the expression (5), we have 

























 2

3

2

*2
2loglog

h

kTm
N

kT

EEEE
h

a

FvaF
  

(or) 
 























































2

3

2

*2
2

log
2

h

kTm

N

kT

EEE

h

a

e

vaF



  

(or) 





















































2

3

2

*2
2

log)(2

h

kTm

N
kTEEE

h

a

evaF



 

(or) 
























































2

3

2

*2
2

log
22

)(

h

kTm

NkTEE
E

h

a

e

va

F



      (6) 

Sub. The expression of EF in equation (6), we get 


































































































kT

h

kTm

NkTEE
E

h

kTm
p c

h

aav

v

h

2/3

2

*

2

3

2

*

2
2

log
22

exp
2

2





   (7) 
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(or) 


















































































2/3

2

*

2

3

2

*

2
2

log
2

1

2

2
exp

2
2

h

kTm

N

kT

EEE

h

kTm
p

h

aavvh




   (8) 

(or) 
kT

EE

h

a

h
av

e

h

kTm

N

h

kTm
p 2

2

1
2/3

2

*

2

1

2

3

2

*

2

22
2














































  

(or)     kTEEh

a

ave
h

kTm
Np

2/

4/3

2

*
2/1 2

2













       (9) 

If  Ea –Ev = ▲E is the acceptor ionization energy required to move the electron from valence band to 

acceptor energy level, then equation (9) becomes, 

  kTEh

a e
h

kTm
Np 2/

4/3

2

*
2/1 2

2 

















        (10) 

Results: 

(i) Density of holes in valence band is proportional to square root of acceptor concentration 

(ii) At very high temperature p – type semiconductor behaves like an intrinsic semiconductor 

Variation of Fermi level with temperature 

We know that 
























































2

3

2

*2
2

log
22

)(

h

kTm

NkTEE
E

h

a

e

va

F



     (1) 

At T = 0K , the above expression becomes, 
2

va

F

EE
E


      (2) 

(i) At 0K the Fermi level lies exactly halfway between acceptor level Ea and top of the valence band 

Ev 



15 

 

     RR/ Dept. of Physics / VCET 

 

(ii) As the temperature increases, the Fermi level shifts upwards, at a particular temperature, when all 

the acceptor atoms are ionized and Fermi level crosses the acceptor level  

(iii)At very high temperature, the Fermi level is shifted to intrinsic  Fermi level and behave as 

intrinsic semiconductor 

5. What is Hall Effect? Derive an expression of hall coefficient? Describe an experimental 

setup for the measurement of hall coefficient? 

“When the conductor carrying a current (I) is placed in a perpendicular magnetic field (B), a 

potential difference is developed inside the conductor in a direction normal to the directions of 

both the current and magnetic field” 

This phenomenon is known as Hall Effect and the corresponding voltage thus generated is called 

Hall voltage 

Explanation 

Consider an external field applied along the X-axis of the specimen. Assuming that the material is 

n-type semiconductor, the current flow consists mainly of electrons moving from right to left, 

corresponding to the conventional current direction. 

When this specimen is placed in a magnetic field ‘B’ and if ‘v’ is the velocity of the electrons 

perpendicular to the magnetic field then each one of them will a experience a downward force of 

magnitude Bev 

This downward force (Lorentz Force FL) due to magnetic field causes the electrons to be deflected 

in the downward direction and hence there is an accumulation of negative charges on  

the bottom face of the slab. This causes the bottom face of the slab to be more negative with 

respect to the top face and a potential difference is established from top to bottom of the 

specimen. This potential difference causes a field EH called Hall field in negative y direction. 

There is a force eEH acting on the electron in the upward direction due to this field. 
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Theory of Hall Effect 

At equilibrium, the downward force Bev will balance the upward force eEH 

Bev = eEH           (1) 

In a uniform sample, the electric current density (J) is related to the drift velocity as  

J = -neV 

Where n is the concentration of electrons. 

ne

J
V


            (2) 

Substituting equation (2) in (1),  

ne

BJ
E

H


            (3) 

This can be written as EH = BJRH        (4) 

Where RH = - 1 / ne is called Hall coefficient 

The negative sign indicates that the developed field is in the negative y direction. 

IIIrly, the Hall coefficient for p – type semiconductor is RH = 1 / p e. 

Where p is the concentration of holes 

Determination of Hall coefficient 

The hall field per unit current density per unit magnetic induction is defined as hall coefficient. 

If t is the thickness of the sample and VH is the hall voltage, then VH = EH t              (5) 

Where EH is hall field. 

From equation (4), we get EH = RH Jx B        

Substituting the value of (5) in above equation, we get VH = RH  Jx B t   (6) 

Now the current density Jx can be written as 
bt

I
J x

x       (7) 

Where ‘b ’ is the width and bt is the area of cross section of the sample 

Substituting equation (7) in equation (6), we get      
bt

BtIR
V XH

H    

          
b

BIR
V XH

H     (8) 

                              Y 

 

Current             VH 

           X 

                     z 

Magnetic field 

(top)   +++++ 

(n-Type) 

--------------(bottom) 

(top)   --------- 

(p-Type) 

++++++++(bottom) 
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      (or) 
BI

bV
R

X

H
H                 (9) 

For an n – type semiconductor 
BI

bV
R

X

H
H


                (10) 

Mobility of charge carriers 

We know that hall coefficient 
ne

RH

1
  

This expression is correct only when the charge carriers is free from any attractive force in energy 

band and moves with constant drift velocity. But this is not true in the case of semiconductors. 

Considering the average speed, it is shown that 
ne

RH

18.1
   for electrons and 

pe
RH

18.1
  for 

holes. 

We know that the electrical conductivity and mobility is related by σ = n e μe 

(or) 
ne

e


   & hence 

ne

e

e


   and hence 

18.1

eH

e

R 



                                      (11) 

Similarly 
18.1

hH

h

R 



                              (12) 

Experimental Determination of Hall Coefficient: 

The experimental setup for the measurement of Hall voltage is shown in figure. 

A semiconducting material is taken in the form of a rectangular slab of thickness ‘t’ and breadth 

‘b’. A suitable current Ix ampere is allowed to pass through this sample along the X axis by 

connecting it to battery 

The sample is placed between the poles pieces of an electromagnet such that the applied magnetic 

field coincides with the z – axis. 

Hall voltage (VH) which is developed in the sample is measured by fixing two probes at the 

centers of the bottom and top faces of the sample. 

    By measuring Hall voltage, Hall coefficient is calculated from the formula
BI

bV
R

X

H

H




  

Applications 

(i) The sign of the hall coefficient is used to determine whether a give semiconductor is n – type 

or p – type 

(ii) Once Hall coefficient RH is measured, the carrier concentration can be determined from  

n = 1 /e RH 
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(iii) The mobility of charge carriers can be obtained if conductivity is known. μe = σeRH 

(iv)  Hall voltage VH for a given current is proportional to B. Hence measurement of VH measures 

the magnetic field B. 

(v) This instrument gives an output proportional to the product of two signals. Thus if current I is 

made proportional to one input and if B is made proportional to the other input, then the Hall 

voltage VH is proportional to the product of the two inputs. 

                                               Magnetic field   

                                                                                                                                 Hall voltage (VH)        

                                                            Current                                                                                       

 

          +   -          

Bt         mA           key       Rh    

                     

 


