
 

 

2(a). Waves and optics 

Part – A 

1. Define simple harmonic motion? 

If the motion is periodic such that acceleration is directly proportional to displacement and is 

always directed towards its mean (equilibrium) position 

2. Define amplitude and phase? 

The maximum distance covered by the body on either side of its mean position is called 

amplitude.  

Phase is a physics quantity that expresses the instantaneous position and direction of motion 

of an oscillating system. 

3. Define Time period and frequency, Give its relation? 

The smallest time required to complete one vibration (or) oscillation is known as time period. 

Time period 2
Displacement

T
Acceleration

   

The number of oscillation made by a body per second is known as frequency of oscillation. it 

is the reciprocal of the time period  

4. What is meant by free oscillation? 

A body which vibrates freely with its natural frequency are said to be free oscillation 

5. What is meant by damped oscillation? 

If a body is set in to vibration, the amplitude keeps on decreasing because of the frictional 

resistance to the motion and hence after some time the oscillation drops down to zero. This 

type of oscillation is called damped oscillation. 

Eg: when a pendulum is displaced from the equilibrium position, it oscillates with decreasing 

amplitude and finally comes to rest. 

6. What is meant by forced vibration? 

In this type of oscillation, we need to give an external force for the oscillation to sustain. 

Hence the body vibrates with a frequency other than natural frequency in equal interval of 

time.  

Eg: Floor vibrates due to marching of soldiers. 

7. What do you understand by the term DEAD BEAT? Give example? 

When the oscillator is under motion, the displacement suddenly drops down to zero without 

performing any oscillation. Such motions are set to be over damped or dead beat oscillations 

Eg: Dead beat moving coil galvanometer 

8. What is meant by CRITICAL DAMPING? give example 

During oscillatory motion, when the displacement decreases to zero rapidly, then it is called 

critical damped motion. 

Eg: Movement of pointers in ammeter, voltmeters, etc., 

9. What do you infer from the amplitude and phase in forced oscillation? 
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From these equations, it is clear that the amplitude and phase of forced oscillation depend on 

driving frequency   and natural frequency 
0  of the oscillator. 

10. What is meant by resonance? Give examples. 

When the driving frequency p  matches with natural frequency , resonance occurs. 

Eg: collapse of bridges and roads due to earthquake. 

11. Define progressive wave? 

It is defined as the vibratory motion of a body which is transmitted continuously in the same 

direction from one particle to the successive particle of the medium and travel forward 

through the medium due to its elastic property. 

12. Define longitudinal wave? 

It is a wave motion in which the particles of the medium are vibrate about their mean 

position along the direction of propagation of wave 

13. Define transverse wave? 

It is a wave motion in which the particles of the medium are vibrate about their mean 

position perpendicular to the direction of propagation of wave 

14. Define plane progressive wave? 

A plane progressive wave is the simplest wave in which the particle of the medium perform 

simple harmonic motion. 

15. Define relaxation time for damped oscillator? 

It is defined as the time taken for the total mechanical energy to decay (1/e) of its original 

value. i.e., 0

t
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16. Define logarithmic decrement of damped oscillator? 

It is defined as the natural logarithm of the ratio between two successive maximum 

amplitudes which are separated by time period 

17. Define quality factor? 

It is defined as 2π times the ratio of energy stored in the system to the energy lost per period 

2 2
energystored E

Q
Eenergylost

T

  



  



  

Part – B 

1. Develop the general theory of the damped oscillation and discuss its essential cases 

involved in it? 

 

 

 



 

 

Damped oscillation: 

If a body is set in to vibration, the amplitude keeps on decreasing because of the frictional 

resistance to the motion and hence after some time, the oscillation drops down to zero. This 

type of oscillation is called damped oscillation. 

Eg: when a pendulum is displaced from the equilibrium position, it oscillates with decreasing 

amplitude and finally comes to rest. 

 

Differential equation and its solution 

Let us consider a body of mass “m” attaching to a spring executing simple harmonic motion 

under a resistive force. Let “y” be the displacement at an instant of time “t” . 
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Then damping system is subjected to: 

(i) Restoring force which is proportional to the displacement and it is acting in opposite 

direction. i.e., F y  (or) F ky                                                                                     (1) 

(ii) Frictional force which is proportional to velocity and directed in the opposite direction 

of motion i.e., 
dy

F
dt

  (or) 
dy

F r
dt

                                                                                   (2) 

Then, Total instantaneous force acting on the body is 
dy

F ky r
dt

                                  (3) 

But, from Newton’s II law of motion, Resultant force (F) = mass (m)     acceleration (
2

2

d y

dt
 ) 

Hence equation (3) becomes, 
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Where 2
r

b
m

  and 2 k

m
   . Also b is damping factor (or) damping coefficient. 

Equation (4) is a second order differential equation of Damped harmonic motion. 

The solution of equation (4) is ty Ae                                                                             (5) 

Where A and α are constant and can be determined from boundary conditions. 

Differentiating equation (5) two times with respect to t,  

tdy
Ae

dt

  and                     (6) 
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Substituting the values of equations 5, 6, and 7 in equation 4, we get 
2 22 0t t tA e bA e Ae            

(or) tAe
2 2( 2 ) 0b       

As 
2 20, 2 0tAe b                (8) 

The solution of equation (8) is 
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(or) 2 2b b               (9) 

Hence, the general solution of equation (5) is 
2 2 2 2[ ] [ ]

1 2

b b t b b ty Ae A e                 (10) 

where A1 and A2 are arbitrary constant, whose values are determined from the boundary 

conditions. 

Case : 1 Heavy damping 

when 2 2b   , then 2 2b   is real and less than b, hence the powers in equation (9) are 

negative. Thus the displacement exponentially reduces to zero without performing any 

oscillation. This type of motion is known as over damped or dead beat. 

Eg: Dead beat moving coil galvanometer 

Case : 2 Critical damping 

when 2 2b  , then 2 2 0b h   i.e., the value of h is very close to zero. 

Hence equation (10) reduces to 
[ ] [ ]
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(or) 
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(or) 1 2
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(or)  1 2(1 ..) (1 ...)bty e A ht A ht       

(or)  1 2 1 2( ) ( )bty e A A h A A t     

(or)  bty e p qt           (11) 

where 1 2( )p A A   and 1 2( )q h A A   

 From equation (11), as displacement increases, the term  p qt  increases, but due to 

negative exponential term, the displacement rapidly reduces to zero and such a motion is 

called critical damping 

Eg: Pointer instruments such as voltmeter, ammeter, etc., 

Case : 2 Under damping 



 

 

when 2 2b   , then 2 2b   is negative and imaginary . 

i.e., 2 2b   = 2 2i b  = i   

where 2 2b    and 1i     

equation (9) now becomes, [ ] [ ]

1 2

b i t b i ty Ae A e           (12) 

(or) 
1 2

bt i t bt i ty Ae e A e e      

(or) 
1 2[ ]bt i t i ty e Ae A e     

(or) 
1 2[ (cos sin ) (cos sin )]bty e A t i t A t i t                           

(or) 
1 2 1 2[( )cos ( ) sin )]bty e A A t A A i t      

 [ sin cos cos sin )]bty e a t a t      

where 1 2sin ( )a A A    and 1 2cos ( )a i A A    

 sinbty ae t      

(or)  2 2sin ( )bty ae b t             (13) 

this is the equation of a under damped harmonic motion with amplitude  btae and goes on 

decreasing with angular frequency 2 2b    as shown in curve. 

 

 

 

 

 

 

  

 

2. Develop the general theory of the forced oscillation and discuss its essential cases 

involved in it? 

In this type of oscillation, an external force is given for the oscillation to sustain. Hence the 

body vibrates with a frequency other than natural frequency due to external force applied in 

equal interval of time. 

Eg: Floor vibrating due to marching of soldiers. 

 

         f sin ωt (External force) 

 

 

Differential equation and its solution 

Let us consider a body of mass “m” attaching to a spring and an external force is applied in 

order to sustain the simple harmonic motion 
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Here three types of forces acting on this oscillator 

(i)Restoring force which is proportional to the displacement and it is acting in opposite 

direction. i.e., F y  (or) F ky                                                                                     (1) 

(ii)Frictional force which is proportional to velocity and directed in the opposite direction of 

motion i.e., 
dy

F
dt

  (or) 
dy

F r
dt

                                                                                   (2) 

(iii)External force which is opposite to the above two forces and helps in maintaining the 

oscillation given by sinF pt         (3) 

where F is the maximum external force and p is the driving frequency of the forced oscillator 

Then, Total instantaneous force acting on the body is sin
dy

F ky r F t
dt

               (4)                       

But, from Newton’s II law of motion, Resultant force (F) = mass (m)     acceleration (
2

2

d y

dt
 ) 

Hence equation (3) becomes, 
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(or) 

2
2

2
2 sin

d y dy
b y f t

dt dt
   

       (5) 

where 2
r

b
m

  ; 2

0
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m
    and

F
f

m
  . Also b is damping factor (or) damping coefficient. 

Equation (5) is a second order differential equation of Forced harmonic motion. 

The solution of equation (5) is sin( )y A t                                                                (6) 

where A is the steady amplitude of vibration and θ is the angle at which the displacement ‘y’ 

lag behind the applied force sinf t   

Differentiating equation (5) twice with respect to time, we get 

cos( )
dy

A t
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              (7) 
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A t

dt
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Substituting equations (6), (7) & (8) in (5), we get 

 2 2
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Equation (9) holds good for all the values of t. Hence the coefficients of sin( )pt   and 

cos( )t   must be equal on both sides 

 2 2
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Similarly 2 sinb A f           (10) 

Squaring and adding equation (9) & (10) 
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Dividing equation (10) by (9) 
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From equations (11) & (12), it is clear that the amplitude and phase of forced oscillation 

depends on driving frequency (ω) and natural frequency (ω0) of the oscillator. 

 

Special cases 

Case: 1 when driving frequency (ω) is less than natural frequency (ω0). i.e., 2 2
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since 
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Hence amplitude depends on force constant k and magnitude of applied force 
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since 2 2p , hence the term 
0

2
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
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& hence  1tan 0 0    



 

 

Hence under this situation, the displacement and driving force are in phase with each other 

 

Case: 2 when driving frequency (p) is equal to natural frequency (ω). 1.e., 2 2p   , this 

condition is said to be resonance 

Amplitude 
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Hence amplitude depends on damping force (r) and magnitude of applied force 
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& hence  1tan
2


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Hence under this situation, the displacement lags behind the driving force by a phase of 
2


  

Case: 3 when driving frequency (ω) is greater than natural frequency (ω0). i.e., 2 2
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2

F
A

m
   

Hence amplitude depends on applied force and mass of the body  
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since ω is very large, hence the term 
1


 = 0   

& hence  1tan 0     

Hence under this situation, the displacement lags behind the driving force by 180° 

 

 

 

 

 

 

 

 



 

 

3. Derive an expression for the particle velocity for a plane progressive wave and 

obtain the differential equation for the moving along positive X – direction 
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 A plane progressive wave is the simplest wave in which the particle of the medium perform 

simple harmonic motion 

Explanation      

Let us consider a plane progressive simple harmonic wave, originating from the origin “O” and 

travels towards +ve  X direction. As the wave propagates, each successive particle of the 

medium is set into simple harmonic motion. 

Displacement at O 

If “v” is the velocity of the particle and “y” is the displacement of the particle at any time “t” then 

we can write displacement of the particle at “O” is siny A t      (1) 

where A is the amplitude, we know that 
2

T


   where T is the time period of oscillation. The 

time taken by a wave to cover a distance “λ” is the wavelength 

Hence 
2
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
           (2) 

Displacement at P 

Now, consider a particle P at a distance x from O. here the wave starting from O will reach P 

after (t = x/v) seconds. i.e., the particle P will have a time delay of 
x

v
 seconds from the particle O 
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we can write displacement of the particle at “P” is 
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we know that ( )Tv or T
v


     

hence equation (3) becomes,  
2

siny A vt x



                                                                  (4) 

This equation represents the complete form of plane progressive wave propagating with the 

velocity “v” in positive X – direction. similarly for negative X – direction, the plane progressive 

wave equation is  
2

siny A vt x



         (5) 

Particle velocity 

Particle velocity is defined as the rate of change of displacement “y” with respect to time “t” 

Differentiating equation (5) two times with respect to t 

 
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Compressible is due to change in +ve direction with respect to distance “x” and rarefaction is due 

to change in –ve direction with respect to distance “x”. Hence differentiating equation (5) two 

times with respect to “x” 
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 
2 2

2 2

4 2
sin

d y
A vt x

dx

 

 
  

        (9) 

comparing equation (6) & (8) 

Particle velocity 

dv

dt

 
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   = - wave velocity (V) x slope of displacement 

dy

dx

 
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     (10) 



 

 

comparing equation (7) & (9) 

2 2

2 2 2

1d y d y

dt v dx


                      (11) 

This equation is the differential equation of a plane progressive wave . 
 


