VELAMMAL COLLEGE OF ENGINEERING \& TECHNOLOGY

MADURAI

DEPARTMENT OF PHYSICS

ANNA UNIVERSITY SOLVED PROBLEMS FOR I SEMESTER 2017-2018

1. Properties of Matter

1. A cantilever of length 50 cm fixed at one end is depressed by 20 mm at the loaded end. Calculate the depression at a distance of 40 cm from the fixed end?
Given data: $\mathrm{l}_{1}=50 \mathrm{~cm}, \mathrm{l}_{2}=40 \mathrm{~cm}, \mathrm{y}_{1}=20 \mathrm{~mm} ; \mathrm{y}_{2}=$?
Formula: $\quad 20 \mathrm{~mm}=\frac{W \times(50 \mathrm{~cm})^{3}}{3 Y I} ; y_{2}=\frac{W \times(40 \mathrm{~cm})^{3}}{3 Y I} ; y_{2}=\frac{l_{2}^{3}}{l_{1}^{3}} \times y_{1}$ Ans $: 19.84 \mathrm{~mm}$
2. Determine the young's modulus of the material of a rod, if it is bend uniformly over two knife edges separated by a distance of 0.6 m and loads of 2.5 kg are hung at 0.18 m away from the knife edges. The breadth and thickness of the rod are 0.025 m and 0.005 m respectively. The elevation at the middle of the rod is 0.0007 m

Given data: $l=0.6 \mathrm{~m} ; \mathrm{W}=2.5 \mathrm{~kg} ; \mathrm{a}=0.18 \mathrm{~m} ; \mathrm{b}=0.025 \mathrm{~m} ; \mathrm{d}=0.005 \mathrm{~m} ; \mathrm{y}=0.0007 \mathrm{~m}$
Formula: $Y=\frac{3 m g a l^{2}}{2 b d^{3} y} ; \quad$ Ans: $\mathbf{Y}=\mathbf{1 . 0 8 8} \times \mathbf{1 0}^{\mathbf{1 1}} \mathbf{N} / \mathbf{m}^{\mathbf{2}}$.
3. A copper wire of 3 m length and 1 mm diameter is subjected to a tension of 5 N . Calculate the elongation produced in the wire if the young's modulus of elasticity of copper is 120 GPa ?
Given data: $\mathrm{F}=5 \mathrm{~N} ; \mathrm{L}=3 \mathrm{~m} ; \mathrm{D}=1 \mathrm{~mm}$ (or) $\mathrm{r}=0.5 \mathrm{~mm} ; \mathrm{Y}=120 \times 10^{9} \mathrm{~Pa} ; l=$?
Formula: $\quad l=\frac{F L}{A Y} \quad$ Ans: 15.9 mm
4. A wire of length 1 mm is clamped at one of its ends. Calculate the couple required to twist the other end by 90°. Given rigidity modulus $=298 \mathrm{GPa}$
Given data: $\mathrm{n}=298 \times 10^{9} \mathrm{~Pa}, \theta=90^{\circ}=\pi / 2$ radian, $\mathrm{r}=0.5 \times 10^{-3} \mathrm{~m}, \mathrm{~L}=1 \mathrm{~m}$
Formula: $\quad C=\frac{\pi n \theta r^{4}}{2 L} \quad$ Ans: $\mathrm{C}=4.59 \times 10^{-2} \mathrm{NM}$

2. Oscillation and Waves, Lasers and Fiber optics

5. Calculate the critical angle, numerical aperture, acceptance angle and fractional index change of a given optical fiber whose refractive indices of core and cladding are 1.55 and 1.50 respectively.

Given data : $\mathrm{n}_{1}=1.55 ; \mathrm{n}_{2}=1.50$; Formula : $\quad \theta_{c}=\sin ^{-1}\left(\frac{n_{2}}{n_{1}}\right) ; N . A=\sqrt{n_{1}^{2}-n_{2}^{2}}$;
$\theta_{0}=\sin ^{-1}\left(\sqrt{n_{1}^{2}-n_{2}^{2}}\right) ; \Delta=\frac{n_{1}-n_{2}}{n_{1}} ;$ Ans: $\theta_{\mathrm{c}}=75^{\circ} 24^{\prime} 26.8^{\prime \prime} ; \theta_{0}=22^{\circ} 59^{\prime} 11^{\prime \prime} ; \Delta=0.033$;
$\mathrm{N} . \mathrm{A}=0.3905$.
6. Optical fiber of 1 mW is injected into a fiber of length 100 m . The out coming signal from the other end is 0.3 mW . Calculate the fiber attenuation in $\mathrm{dB} / \mathrm{Km}$.
Given: $\mathrm{P}_{\text {in }}=1 \mathrm{~mW} ; \mathrm{P}_{\text {out }}=0.3 \mathrm{~mW} ; \mathrm{L}=100 \times 10^{-3} \mathrm{Km} ;$ Formula $\alpha=\frac{10}{L} \log \left(\frac{P_{\text {in }}}{P_{\text {out }}}\right)$
Ans: $\alpha=52.28 \mathrm{~dB} / \mathrm{Km}$

3. Thermal Physics

7. A rod of 0.25 m long and $0.892 \times 10^{-4} \mathrm{~m}^{2}$ area of cross section is heat at one end through 393 K while the other end is kept at 323 K . The quality of heat which flow in 15 minutes along the rod is $8.811 \times 10^{3} \mathrm{~J}$. Calculate the thermal conductivity of rod?
Given data: $\theta_{1}=393 \mathrm{~K} ; \theta_{2}=323 \mathrm{~K} ; Q=8.811 \times 10^{3} J ; t=15 \mathrm{~min}=15 \times 60=900 \mathrm{sec}$;
Formula: $K=\frac{Q x}{A\left(\theta_{1}-\theta_{2}\right) t} \quad$ Ans: $392 \mathbf{W m}^{-1} \mathbf{K}^{-1}$
8. The outer ends of two bars A \& B (inner ends of which are joined together by welding) are at $100^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$. if they have the same area of cross section and the same length and their thermal conductivities are in the ratio of $A: B=7: 5$. Solve the temperature at the welded joint
Given data: $K_{1}: K_{2}=7: 5 d_{1}=d_{2}, \theta_{1}=100^{\circ} \mathrm{C}, \theta_{2}=50^{\circ} \mathrm{C}$
Formula: $\frac{K_{1}}{d_{1}} A\left(\theta_{1}-\theta\right)=\frac{K_{2}}{d_{2}} A\left(\theta-\theta_{2}\right) \quad$ Ans: $\boldsymbol{\theta}=79.166^{\circ} \mathrm{C}$

4. Quantum Physics

9. Calculate the deBroglie wavelength of an electron accelerated with potential difference of 400 volts?
Given data: $\mathrm{V}=400 \mathrm{v}$; Formula $\lambda=\frac{12.26}{\sqrt{V}} \dot{A}$; Ans: $0.613 \AA$
10. Calculate the deBroglie wavelength of neutron moving with $\mathrm{K} . \mathrm{E}$ of 0.025 eV with mass $1.674 \times 10^{-27} \mathrm{Kg}$?
Given: $\mathrm{E}=0.025 \times 1.6 \times 10^{-19} \mathrm{~J} ; \mathrm{m}=1.674 \times 10^{-27} \mathrm{Kg} ;$ Formula: $\lambda=\frac{h}{\sqrt{2 m E}} ;$ Ans: $\mathbf{0 . 1 8 1 \mathrm { nm }}$
11. In Compton scattering, the incident photon have wavelength 0.5 nm . Calculate the wave length of the scattered radiation if they are viewed at an angle of 45° to the direction of incidence
Given date: $\lambda=0.5 \times 10^{-9} \mathrm{~m} ; \theta=45^{\circ} ; \mathrm{h}=6.626 \times 10^{-34} \mathrm{Js}^{-1} ; \mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s} ; \mathrm{m}_{0}=9.11 \times 10^{-31} \mathrm{Kg}$ Formula: $\lambda^{\prime}=\lambda+\frac{h}{m_{0} c}(1-\cos \theta)$; Ans: 0.5007 nm
12. Calculate the minimum energy, an electron can possess, in an infinite potential well of width 4 nm ?
Given data: $\mathrm{n}=1 ; \mathrm{a}=4 \times 10^{-9} \mathrm{~m} ; \mathrm{h}=6.626 \times 10^{-34} ; \mathrm{C}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$;
Formula: $E=\frac{n^{2} h^{2}}{8 m a^{2}}$ Ans: $3.76 \times 10^{-21} j$ (or) $0.0235 e V$

5. Crystal Physics

13. Iron has BCC Structure with atomic radius $0.123 \AA$. Find the lattice constant and volume of the unit cell?

Given data: $\mathrm{r}=0.123 \times 10^{-10} \mathrm{~m} ; \AA$; Formula: $a=\frac{4 r}{\sqrt{3}} ; \mathrm{V}=\mathrm{a}^{3}$
Ans: $\mathrm{a}=0.284 ; \mathrm{V}=2.2906 \times 10^{-28} \mathrm{~m}^{3}$
14. In a simple cubic system, the closest distance between its neighboring atoms is $2.62 \AA$.

Calculate the spacing between (100), (110) and (111) planes?
Given data: $(\mathrm{h} \mathrm{kl})=\left(\begin{array}{lll}1 & 0 & 0\end{array}\right),\left(\begin{array}{lll}1 & 1 & 0\end{array}\right) \&(111) ; a=2.62 \times 10^{-10} \mathrm{~m}$
Formula: $d=\frac{a}{\sqrt{h^{2}+k^{2}+l^{2}}}$ Ans: $2.62 \AA ; 1.85 \AA, 1.51 \AA$
15. Sketch $(100),\left(\begin{array}{ll}1 & 1\end{array}\right),\left(\begin{array}{ll}1 & 1\end{array}\right) \&(120)$ planes for the cubic systems?

