
 

 

 Part – A 

1. Explain Planck’s hypothesis? (or)  What are the postulates of Planck’s quantum 

theory? (or) what are the assumptions of quantum theory of black body radiation? 

(i)  The electrons in the black body are assumed as simple harmonic oscillator 

(ii) The frequency of radiation emitted by an oscillator is the same as that of the frequency of vibration 

(iii) The oscillators (electrons) radiate energy in a discrete manner and not in a continuous manner. 

(iv) The oscillators  exchanges energy in the form of either absorption or emission within the 

surroundings in terms of quanta of magnitude ‘h’ 

2. What is Compton Wavelength? 

The shift in wavelength corresponding to the scattering angle of 90° is called Compton wavelength. 

W.K.T Compton shift (Δλ) = 
ℎ

𝑚0𝐶
(1 − cos 90°) =  

6.626 ×10−34

9.11 ×10−31 ×3×10−8 =  0.02424𝐴°  

3. State De-Broglie’s Hypothesis (or) explain the concept of wave nature? (or) What is meant by 

matter waves? Give the origin of concept? 

 The light exhibit dual nature such as a particle & wave. De-Broglie suggested that an electron, which 

is a particle, can also behave as a wave and exhibit the dual nature. Thus the wave associated with the 

material particle are called matter waves   ∴ 𝐷𝑒 − 𝐵𝑟𝑜𝑔𝑙𝑖𝑒 𝑤𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ (𝜆) =  
ℎ

𝑚𝑣
 

4. Give the importance of Planck’s radiation formula?      

(i) it explains all regions of black body spectrum 

(ii) it is based on quantum theory 

(iii) it is used to derive other laws related to black body radiation 

5. What is the physical significance of a wave function? 

(i) The probability of finding the particle in space at any given instant of time is characterized by 

a function ψ ( x,y,z) called wave function 

(ii) It relates the particle and the wave statistically 

(iii) It gives the information about the particle behavior 

(iv) It is a complex quantity 

(v) ψψ* is a probability density of the particle , which is real and positive 

6. What is black body and what are its characteristics? 

A perfect black body is said to be a perfect absorber, since it absorbs all the wavelength of the 

incident radiation. The black body is a perfect radiator, because its radiates all the wavelengths 

absorbed by it. This phenomenon is called black body radiation. 

7.  Define Stefan – Boltzmann‘s law? 

 It states that “the total amount of energy radiated per second per unit area of a perfect black body is 

directly proportional to fourth power of the absolute tempecture “   

i.e., E α T4   or E = σT4 

Where σ is a Stefan’s constant and   𝜎 =
2𝜋5𝐾4

15 ℎ3𝐶2  = 5.67 x 10 -8 Wm -2K -4 

 

8. State Kirchoff’s law of radiation? 

Ratio of emissive power to the coefficient of absorption of any given wavelength is the same for all 

bodies at a given temperature and is equal to the emissive power of the black body at that temperature 
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9. Define Wien’s Displacement law? Give its importance? 

It states that “the wavelength corresponding to the maximum wavelength is inversely proportional to 

the absolute tempecture”   i.e., λmax T = Constant 

Limitations: it holds good only at shorter wavelengths. 

 

10. Define Rayleigh’s – jeans Law? Give its limitations? 

It states that “the energy distribution is directly to the absolute tempecture and inversely proportional 

to the fourth power of the wavelength 

i.e., 𝐸𝜆 =
8𝜋𝐾𝑇

𝜆4   

This law holds good only for longer wavelength regions. 

11. What is meant by photon? Give any two properties? 

Photons are discrete energy values in the form of small quanta’s of definite frequency (or) wavelength. 

Properties: 

(i) They does not have any charge and they will not intense 

(ii) The energy & momentum of the photon is given by E = hυ and p = mc 

12. Define Compton effect and Compton shift? 

When a photon of energy “hυ” collides with a scattering element. The scattering beam has two 

components as one of them have same frequency (or) wavelength as that of incident radiation and the 

other have lower frequency (or) higher wavelength . This effect is called Compton effect. The shift in 

wavelength due to scattered x- rays is called Compton shift. 

13. Define Eigen value and Eigen function? 

Energy of a particle moving in one dimensional box of width ‘a’ is 𝐸𝑛 =  
𝑛2ℎ2

8𝑚𝑎2
.for each value of ‘n’ 

there is a energy level. Where En is called Eigen value. 

For every quantum state, there is a corresponding wave function ‘ψn’ called Eigen function given 

by 𝜓𝑛 =  √
2

𝑎
sin

𝑛𝜋𝑥

𝑎
 

14. What is meant by degenerate (or) non – degenerate state? 

For various combinations of quantum numbers if we get some Eigen value at different eigen 

functions, then it is called degenerate state. 

For various combinations of quantum numbers if we get same eigen values & eigen functions, then it 

is called non degenerate state. 

15. What are the properties of matter waves? 

(i) Matter waves are not electromagnetic waves. 

(ii) Matter waves are new kind of waves in which due to the motion of the charged particles, 

electromagnetic waves are produced. 

(iii) Lighter particles will have high wavelength 

(iv) Particles moving  with less velocity will have high wavelength 

(v) The velocity of matter wave is not a constant, it depends on the velocity of the particle. 

(vi) If the velocity of the particle is infinite then the wavelength of matter wave is 

indeterminate(λ=0) 

(vii) The wave and particle aspects cannot appear together 

(viii) Locating the exact position of the particle in the wave is uncertain 

 

 



 

 

16. Distinguish any four differences between TEM and STEM? 

 

S.NO TEM STEM 

1 Magnification is 10,00,000 times Magnification is more than 10,00,000 times  

2 Resolution is 0.2nm  Resolution is 0.1nm 

3 Resultant image is a 2 – D image Resultant image is a 3 – D image 

4 Cost is low Cost is high 

 

17. For a free particle moving with a one dimensional potential box, the ground state energy cannot 

be zero, why? 

For a free particle moving within a one dimensional potential box, when n=0 the wave function is 

zero for all values of x i.e., it is zero even within the potential box. This would mean that the particle 

is not present within the box. Therefore the state with n=0 is not allowed. 

18.  What is meant by tunneling effect? 

In quantum mechanics, a particle having lesser energy (E) than the barrier potential (V) can easily 

cross over the potential barrier having a finite width ‘a’ even without climbing over the barrier by 

tunneling through the barrier. This process is called Tunneling. 

19. Mention the occurrence of tunneling effect? 

(i) Josephson effect – electron pairs in the super conductor’s tunnel through the barrier layer giving 

rise to Josephson current 

(ii) Emission of alpha particles by radioactive nucleui 

(iii) Tunneling diodes 

(iv) Electron tunnels through insulating layer act as a switch by tunneling effect. 

20. What is meant by energy spectrum of a black body? what do you infer from it? 

   The distribution of energy for various wavelength at various temperatures is known as energy 

spectrum of a black body 

Inference 

(i) The energy distribution is not uniform at any given temperature 

(ii) When temperature increases, energy decreases 

(iii) The total energy emitted at any particular temperature can be found by the area traced by the curve 

 

 

Part - B 

  

1. Derive an expression for Planck’s radiation law from the average energy emitted by a black 

body & deduce Planck’s formula to prove the Wien’s displacement law, Rayleigh- Jeans law & 

Stefan’s – Boltzmann law? 

Assumptions: Planck derived an expression for the energy distribution, with the following 

assumptions: 

(i) A black body radiator contains electrons or so called simple harmonic oscillators, which are 

capable of vibrating with all possible frequencies. 

(ii) The frequency of radiation emitted by an oscillator is the same as that of the frequency of 

vibrating particles 

(iii) The oscillators (electrons) radiate energy in a discrete manner and not in a continuous manner. 

(iv) The oscillators exchanges energy in the form of either absorption or emission within the 

surroundings in terms of quanta of magnitude ‘h’ as in fig. 4.1 



 

 

(v) The vibrating particles can  radiate energy when the oscillator moves from one state to another 

       

E3  3 hυ  n=3 

E2  2 hυ  n=2 

E1    hυ  n=1 

       0       0           n =0 

Fig 4.1 

i.e., E = nh 

 where n = 0,1,2,3…..  

Thus the exchange of energy are limited to a discrete set of values say 0,h,2h,3h ……. For 0, E, 2E, 

3E,… for n number of oscillators. 

Planck’s Radiation Law 

Let us consider ‘N’ number of oscillators with their total energy as Er. 

∴The average energy of an oscillator is given by 
N

E
E T       (1) 

If N0, N1, N2, N3, …..  are the oscillators of energy 0,E,2E,3E,….respectively then we can write 

(i) The total number of oscillators N = N0 + N1 + N2 +N3 + …….         (2) 

(ii) Total energy of oscillators ET = 0N0 + EN1 + 2EN2 +3EN3 + ……..        (3) 

According to Maxwell’s distribution formula, the number of particles in the oscillatory system having an 

energy is given by 0

/E KT
eN N             (4) 

Where K - Boltzmann constant; T – Temperature 

For various values of oscillators, i.e., n = 0, 1, 2, 3…... the number of oscillators N0, N1, N2, N3, ….. as: 

(i) For n=0 : N0 = N0e0 

(ii) For n=1 : N1 = N0e -1E / KT  

(iii) For n=2 : N2 = N0e -2E / KT  

(iv) For n=3 : N3 = N0e -3E / KT  

 

Therefore the total number of oscillators can be obtained by substituting the values of N0, N1, N2, N3, …..  

in equation (2), thus 

N = N0e0 + N0e -1E / K
B

T + N0e -2E / KT + N0e -3E / KT +……… 



 

 

N = N0 [1+ e -1E / KT + e -2E / KT + e -3E / KT …….]      

Put x = e -E / KT, then equation (5) becomes, N = N0[ 1+ x + x2 + x3 +……. …..]                            (5) 

We know, 1 + 𝑥 + 𝑥2 + 𝑥3 + ⋯ . . =  
1

 (1−𝑥)
. Therefore we can write equation (5) as  

The total number of oscillators  
0

1
E

kT

N N

e


                           (6) 

Similarly by substituting the values of N0, N1, N2, N3, ….. in equation (3), the total energy can be written as 

ET = 0N0e0 + EN0e -1E / KT + 2EN0e -2E / KT + 3EN0e -3E / KT +………  

ET = N0Ee -E / KT [1+2 e -E / KT+3 e -2E / KT+……]        (7) 

Put x = e -E / KT, then equation (7) becomes ET = N0Ee -E / KT [1+2x +3 x2 + 4x3 +……. ]              

We know 1 + 2𝑥 + 3𝑥2 + ⋯    =  
1   

(1−𝑥)2  

Therefore equation (7) becomes 

The total energy of oscillators  
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                                                         (8) 

Now the average energy from equation (i) is   

Average energy  0
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Or  
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

                                                       (10) 

Substituting the values of E= h in the above equation, we get 

   
/ 1Bhv K T

h
E

e




         

 

Equation (10) represents the average energy of the oscillator. 

The number of oscillators per unit volume within the range of frequency υ and υ + d υ is given by 
2

3

8 v
N dv

c


                                  (11) 



 

 

Energy density Eυ dυ (or)    No. of oscillators per unit volume    x 

Total energy per unit volume  =                 Average energy of an oscillator 

                𝑬𝒗𝒅𝒗 = 𝑵. 𝑬̅    (12) 

Substituting equations (10) and (11) in equation (12), we get  
2

3 1

8
h

kT

h
E d d

c e

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 


   

(or) 
3

13( )

8
h

kT

h
E d d

c e


 
 


         (13) 

Planck’s radiation law in terms of wavelength. 

We know  
c




   

Differentiating numerically we get,  
2

c
d d 


   

Substituting the value of υ and d υ, we get  
 

3

3 3 2 /

8 1

1hc KT

hc c
E d d

c e
 


 

 



 

(or) 
 5 /

8

1hc KT

hc
E

e
 







      (14) 

This law has good agreement with all the experimental results. It also helps to derive the Stefan-Boltzmann 

law, Wien’s displacement law and Rayleigh Jean’s law. 

Wien’s Displacement law: 

It holds good only at shorter wavelengths, hence λ<<1, 1 / λ>>1. Therefore  
/ 1hc KTe    ≈ /hc KTe 

 

Hence equation (14) becomes, 

2
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15 /

8 1
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      Where C1 = 8πhc & C2 = hc / k 

This is the empirical formula for Wien’s displacement law 
 

Rayleigh – Jean’s Law: 

 It holds good only for longer wavelength, hence hence λ>>1, 1 / λ<<1.  

Therefore 
/hc KTe  = 1 + hc / λKT+ ½ (hc / λKT)2 + ………Since the higher order terms is very small , the 

terms having powers are neglected. Hence, 
TKhc Be

/
= 1 + hc / λKT 
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2. Give the theory of Compton effect? Explain briefly about its experimental verification? 

Compton Effect: When a beam of monochromatic radiation such as X-rays, γ rays etc., of high frequency 

is allowed to fall on a fine scatterer, the beam is scattered into two components viz, 

(i) One component having the same frequency (or) wavelength as that of the incident radiation so called 

unmodified radiation, and  

(ii) The other component having lower frequency (or) higher wavelength compared to incident 

radiation, so called modified radiation. 

This effect of scattering is called Compton Effect and the change in wavelength of scattered X – rays is 

known as Compton shift. 

Thus as a result of Compton scattering, we get (i) Unmodified radiation (ii) Modified radiation and (iii) a 

recoil electron. 

Theory of Compton Shift 

Principle : In Compton scattering the collision between a photon and an electron is considered. Then by 

applying the laws of conservation of energy and momentum, the expression for Compton wavelength is 

derived. 

Assumptions 

1. The collision occurs between the photon and an electron in the scattering material. 

2. The electron is free and is at rest before collision with the incident photon. 

Now, let us consider a photon of energy ‘h’ colliding with an electron at rest of mass m0. 

During the collision process, a part of energy is given to the electron, which in turn increases the 

kinetic energy of the electron and hence it recoils at an angle of Φ with mass ‘m’ and velocity ‘v’ as in fig. 

4.10. The scattered photon moves with an energy h’ with longer wavelength than h, at an angle θ with 

respect to the original direction. 

Let us find the energy and momentum components before and after collision process. 

Energy before collision 

(i) Energy of the incident photon = h 

(ii) Energy of the electron at rest  = m0c2 

Where m0 is the rest mass energy of the electron. 

Total Energy before Collision = h + m0c2      (1) 



 

 

Energy after collision 

(i) Energy of the scattered photon = h' 

(ii) Energy of the recoil electron = mc2 

Where m is the mass of the electron moving with velocity ‘v’ 

Total energy after collision = h
'
 + mc2      (2) 

We know according to the law of conservation of energy, 

Total energy before collision = Total energy after collision 

Therefore Equation (1) = Equation (2) 

(i.e.,)    h + m0c2 = h' + mc2      (3) 

                                                        Y                    

                         𝑝 =
ℎ𝑣′

𝑐
 

            𝐸 = ℎ𝑣 ′ 

               E = hν   (or) 𝑝 =
hν

𝑐
    θ    

    X 

            Incident photon                    Ф 

 

 Electron at rest                     Recoil electron  

 E = m0c2          E =mc2 

    Fig 4.10 

X-Component of Momentum before Collision 

(i) X-component momentum of the incident photon = h/c 

(ii) X-component momentum of the electron at rest  = 0 

Total X-Component of momentum before collision = h/c    (4) 

X-Component of Momentum after Collision 

(i) X-component momentum of the scattered photon can be calculated from fig. 4.11 

       In ∆OAB  cos θ = Mx / (h'/c) 

       X-component momentum of the scattered photon (Mx) = h' /c cos θ 

(ii) X-component momentum of the recoil electron can be calculated from fig. 4.11 



 

 

       In ∆OBC  cos Φ = Mx / mv 

       X-component momentum of the recoil electron (Mx) = mv cos Φ 

Total X-component of momentum after collision = hν’/c cos θ + mv cos Φ    (5) 

We know according to the law of conservation of momentum, 

Total momentum before collision = Total momentum after collision 

i.e., Equation (4) = Equation (5)  

'

cos cos
h h

mv
c c

 
                                      (6) 

Y-Component of Momentum before Collision 

(i) Y-component momentum of the incident photon = 0 

(ii) Y-component momentum of the electron at rest  = 0 

 Total Y-Component of momentum before collision = 0    (7) 

 

Y-Component of Momentum after Collision 

(i) Y-component momentum of the scattered photon can be calculated from fig. 4.11.   

        In ∆OAE  sin θ = My / (h’/c) 

Y-component momentum of the scattered photon=  
'

sin
h

c


  

(ii) Y-component momentum of the recoil electron can be calculated from fig. 4.11 

 In ∆OCD  sin Φ = -My/ mv 

 Y-component momentum of the recoil electron = -mv sin Φ 

Total Y-component of momentum after collision = 
'

sin sin
h

mv
c


                 (8) 

According to the law of conservation of momentum, 

Total momentum before collision = Total momentum after collision 

i.e., Equation (7) = Equation (8)  

0 = = 
ℎ𝜈′

𝑐
sin θ - mv sin Φ                    (9) 



 

 

from equation (6), we can write  
'

cos cos
h h

mv
c c

 
    

(or)   h (ν – ν’ cos θ) = mcv cos Φ       (10) 

from equation (9) we can write  

 hν’ sin θ = mcv sin Φ                     (11) 

squaring and adding equation (10) & (11) 

h2(ν2 -2 ν ν’ cos θ+(ν’)2cos2 θ)+h2(ν’)2sin2θ = m2c2v2 (cos2 Φ+sin2 Φ) 

since cos2Φ+sin2Φ = 1 and h2 (ν’)2[cos2θ+ sin2θ] = h2 (ν’)2 we get 

h2 (ν2 - 2 ν ν’ cos θ + (ν’)2) = m2c2v2 

 (or)      h2ν2 - 2 h2 ν ν’ cos θ + h2 (ν’)2 = m2c2v2       (12) 

from equation (3), we can write       mc2 = m0c2+h (ν-ν’) 

Squaring on both sides we get 

m0
2c4+2h m0c2 (ν- ν’) + h2 [ν2-2νν’+ (ν’) 2] = m2c4  

m0
2 c4+ 2hm0c2 (ν- ν’) + h2ν2 - 2 h2νν’ + h2 (ν’) 2 = m2c4      (13) 

Subtracting equation (12) from equation (13) we get 

m0
2 c4  + 2h m0 c2 (ν- ν’) - 2h2νν’(1-cos θ)  = m2c2 (c2–v2)                  (14) 

From the theory of relativity, the relativistic formula for the variation of mass with velocity of the electron 

is given by 0

2

2
1

m
m

v

c





  

Squaring, we get 
2

2 0
2 2

2

m
m

c v

c




 (or) 
2 2

2 0
2 2

m c
m

c v



 

m2 (c2- ν2) = m0
2c2      (15) 

Now let us multiply c2 on both sides of this equation to make it similar to equation (14) 

   m2c2 (c2- ν2) = m0
2c4      (16) 

Now let us equate equations (16) and (14) 



 

 

m0
2c4 = m0

2c4 + 2h m0c2 (ν- ν’) - 2h2νν’(1-cos θ) 

2h m0c2 (ν- ν’) = 2h2 νν’(1-cos θ) 
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     Fig. 4.11 
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0
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h
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       

0

1 cos
h

m c
                                                                                        (18) 

 

Equation (18) represents the shift in wavelength, i.e. Compton shift which is independent of the incident 

radiation as well as the nature of the scattering substance. 

Thus the shift in wavelength or Compton shift purely depends on the angle of scattering. 

Special cases 

Case (i) when θ = 0; cos θ = 1 

Equation (18) becomes Δλ = 0 .This implies that at θ = 0 the scattering is absent and the out coming 

radiation has the same wavelength or frequency as that of the incident radiation. Thus the output will be a 

single peak as shown in figure 4.12 (a). 

Case (i) when θ = 900; cos θ = 0 

Equation (18) becomes 𝜆 =  
ℎ

𝑚𝑜𝐶
  Substituting h, mo and C , Δλ = 0.02424Aº 

This wavelength is called COMPTON WAVELENGTH, which has a good agreement with the experimental 

results as shown in fig.4.12(c) 



 

 

Case (i) when θ = 1800; cos θ = -1 

Equation (18) becomes   𝜆 =  
ℎ

𝑚𝑜𝐶
[1 − (−1)]  =  

2ℎ

𝑚𝑜𝐶
   

Substituting h, mo and C, Δλ = 0.04848Aº 

 

Thus for θ = 1800 the shift in wavelength is found to be maximum as shown in fig 4.12(d). 

 

            For θ=0º    For θ=45º           for θ=90º        For θ=180º 

 

      Un modified     

                 

  

 

        ∆𝜆=0.0236 

                        ∆𝜆 =0.0472 

      ∆𝜆 =0.071         

       

                  Wavelength   

    

    Fig 4.12 (a)           Fig 4.12 (b)     Fig 4.12(c)        Fig 4.12(d)  

    

EXPERIMENTAL VERIFICATION OF COMPTON EFFECT: 

Principle 

 When a photon of energy ‘hν’ collides with a scattering element, the scattered beam has two 

components, viz, one of the same frequency (or) wavelength as that of the incident radiation and the other 

has lower frequency (or) higher wavelength compared to incident frequency (or) wavelength. This effect is 

called Compton effect and the shift n wavelength is called Compton shift. 

Construction  

 It consists of an X-ray tube for producing X-rays. A small block of carbon C (scattering element) is 

mounted on a circular table as in fig. 4.13 

 A Bragg’s spectrometer (Bs) is allowed to freely swing in an arc about the scattering element to 

catch the scattered photons. Slits S1 and S2 helps to focus the X-rays onto the scattering element. 

Working 

 X-rays of monochromatic wavelength ‘λ’ is produced from an X-ray tube and is made to pass 

through the slits S1 and S2. These X-rays are made to fall on the scattering element. The scattered X-rays are 

received with the help of the Bragg’s spectrometer and the scattered wavelength is measured .Now an 

ionization energy is replaced at the target to measure the intensity for the corresponding wavelength. 

 The experiment is repeated for various scattering angles and the scattered wavelengths and the 

corresponding intensities are measured. The experimental results are plotted as in fig. 4.13 

 In this fig. when the scattering angle θ = 00, the scattered radiation peak will be the same as that of 

the incident radiation peak ‘A’. Now when the scattering angle is increased, for one incident radiation peak 
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A of wavelength (λ) we get two scattered peaks A and B. Here the peak ‘A’ is found to be of same wavelength 

as that of the incident wavelength and the peak B is of greater wavelength than the incident radiation. 

 The shift in wavelength (or) difference in wavelength (Δλ) of the two scattered beams is found to 

increase with respect to the increase in scattering angle. 

 At θ = 900, Δλ is found to be 0.0236 ≈ 0.02424, which has good agreement with the theoretical 

results. Hence this wavelength is called Compton wavelength and the shift in wavelength is called Compton 

shift. 

           L1  L2  Scattered ray  Bragg X-ray Spectrometer 

 

    X-rays      

                                          Unscattered X -ray  

       

                             Path of spectrometer 

 

3. Derive Schröedinger’s Time dependent & time independent wave equations? Give the physical 

significance of ψ? 

Schröedinger Time Dependent wave function  

A particle can behave as a wave only under motion. So, it must be accelerated by a potential field 

 

∴, Total energy (E) = Potential Energy (V) + Kinetic Energy  

i.e., 21

2
E V mv      

(or) 
2 21

2

m v
E V

m
    

(or) 
2

2

p
E V

m
    [Since p = mv] 

(or) 
2

2

p
E V

m
                                                       (1) 

According to classical mechanics if ‘x’ is the position of the particle moving with the velocity ‘v’, then the 

displacement of the particle at any time ‘t’ is  given by   

x
i t

v
y Ae


  

   
     

 Where ω is the angular frequency of the particle 

Similarly in quantum mechanics the wave equation Ψ (x, y, z, t) represents the position (x, y, z) of a moving 

particle at any time‘t’ and is given by  

 



 

 

( , , , )

x
i t

v
x y z t Ae


  

   
                      (2) 

We know that angular frequency ω = 2лv 

 

∴ Equation (2) becomes 

2

( , , , )

x
i t

v
x y z t Ae


 
  

   
                                        (3) 

We know E h  (or) 
E

h
                                                            (4) 

Also, if ‘v’ is the velocity of the particle behaving as a wave, 

Then the frequency  
v




  (or) 
1v

 
                                        (5) 

Substituting equations (4) & (5) in equation (3), we get 

2

( , , , )

Et x
i

h
x y z t Ae




    
     

                      (6) 

If ‘p’ is the momentum of the particle, then the de-Broglie wavelength  

is given by 
h h

mv p
                   (7) 

Substituting equation (7) in (6) we get 

2

( , , , )

Et px
i

h h
x y z t Ae


    

     
           

(or)  
 

2

( , , , )
i Et px

hx y z t Ae


 

       

Since
2

h


   we can write   

 
( , , , )

i
Et px

x y z t Ae
 

                               (8) 

Differentiating equation (8) partially with respect to ‘x’ we get 

 
i

Et Px ip
Ae

x

   
  

  
  

Differentiating once again partially with respect to ‘x’ we get 

 2 2 2

2 2

i
Et Px i p

Ae
x

    
     

      

 Since 
 

( , , , )

i
Et px

x y z t Ae
 

  and i2 = -1, we can write 

2 2

2 2
( , , , )

p
x y z t

x

   
      

 



 

 

(or) 
2

2 2

2
p

x

 
  


                                             (9) 

Differentiating equation (8) partially with respect to‘t’ we get 

 
i

Et Px iE
Ae

t

   
  

  
 

(or) ( , , , )x y z t E
i t


 

 
    

 
( , , , )

i
Et px

x y z t Ae
  

  
  

  

(or) E i
t


 


                                   (10) 

Substituting equations (9) & (10) in equation (1) , we get 

2 2

22
i V

t m x

  
 

 
  

(or)  
2 2

22
i V

t m x

  
   

   
                                                   (11) 

Equation (11) represents the one dimensional Schrodinger time dependent wave equation along ‘x’ direction. 

Also the wave function Ψ (x, y, z, t) depends on both the position (x, y, z) and time (t) 

 

Similarly for three dimensional Schrodinger time dependent wave equation can be written as 

 
2

2

2
i V

t m

 
    

   
                                                                           (12) 

 

Where 
2 2 2

2

2 2 2x y z

  
   

  
  

 

Equation (12) can also rewritten as EΨ = HΨ 

   

Where E is an energy operator given by E i
t





 & 

  

H is called Hamiltonian operator, given by 
2

2

2
H V

m
     

 

 Schrödinger time independent wave equation 

  

In Schrödinger time dependent wave equation the wave function ‘Ψ’ depends on time, but in Schrodinger 

time independent wave function ‘Ψ’ does not depend on time & hence it has many applications 

   

We know that time dependent wave function  

 
( , , , )

i
Et px

x y z t Ae
 

   



 

 

Now, splitting the RHS of this equation in to (i) Time dependent factor & (ii) Time independent factor, we 

get 

( , , , )

iEt ipx

x y z t Ae e



   

 (or) 𝛹(𝑥, 𝑦, 𝑧, 𝑡) =  𝐴 𝜓𝑒−
𝑖𝐸𝑡

ℏ   
 .     ( , , , )

iEt

x y z t A e



                                        (1)  

 

Where ‘ψ’ represents the time independent wave function.  i.e., 
ipx

e    

Differentiating equation (1) partially with respect to ‘t’ we get 

iEt
iE

A e
t




  

    
                           (2) 

Differentiating equation (1) partially with respect to ‘x’ we get, 

 
iEt

Ae
x x




 


 
 

 

Differentiating once again partially with respect to ‘x’ we get,    
2 2

2 2

iEt

Ae
x x




  


 
                                (3) 

 

We know the time dependent wave equation for 1-dimension is 

 
2 2

22
i V

t m x

  
 

 
                                                                             (4) 

 

We can get the Schrödinger time dependent wave equation, just by substituting equations (1),(2) & (3), 

which has relation between the time dependent wave function (Ψ)  and  time independent wave  

Function (ψ) in equation (4) 

 

Thus, substituting equations (1),(2) & (3) in equation (4) , we get  
2 2

22

iEt iEt iEt
iE

i A e VA e Ae
m x


 

  
  

  
 

 

 

(or) 
2 2

22

iE
i V

m x


 

  
  

 
  

(or) 
2 2

2

2
( )

2
i E V

m x


 


  


(or)  

2 2

22
E V

m x


 


  


   

 

(or)  
2

2 2

2m
E V

x


 

 
 


 

 

(or)  
2

2 2

2
0

m
E V

x





  


                                                                   (5) 

 

Equation (5) represents the Schrodinger time independent wave function in one dimension along ‘x’ 

direction. Here the wave function is independent of time .Similarly for 3 – dimension, the Schrodinger time 

independent wave function is given by  2

2

2
0

m
E V                                   (6)  

Where 
2 2 2

2

2 2 2x y z

  
   

  
 



 

 

Physical Significance of a wave function [Ψ] 

(i) It gives the relation between the particle and wave nature of the  matter statistically  

         i.e., Ψ = ψ 𝑒−𝑖𝜔𝑡 

(ii) Wave function gives the information about the particle behavior 

(iii) Ψ is a complex quantity and does not have any physical meaning 

(iv) |𝜓|2 = 𝜓∗̇ 𝜓 is real & positive. This concept is similar to light. In light amplitude may be (+ve) or (-ve) 

but the square of intensity of light is +ve & measurable 

(v) |𝜓|2 represents the probability density of finding the particle per unit volume 

(vi) for a given volume 𝑑𝜏, the probability of finding the particle is given by Probability (P) = ∭  |𝜓|2 𝑑𝜏     

where 𝑑𝜏 = 𝑑𝑥. 𝑑𝑦. 𝑑𝑧 

(vii) The probability will have any values between 0 & 1 

1) If P =0 , then there is no particle within the given limits  

2) If P = 1 ,the particle is definitely present within the given limits 

3) If P = 0.7, then there is 70% chance of finding the particle within the given limits. Also there is                      

30% of no chance of finding the particle  

 

4. Using Schrodinger’s time independent wave equation normalize the wave function of electron 

trapped in a one dimensional potential well? 

Let us consider a particle (electron) of mass ‘m’ moving along x- axis, enclosed in a one dimensional 

potential box as shown in figure 4.14. Since the walls are of infinite potential the  

Particle does not penetrate out from the box 

 

Also, the particle is confined between the lengths 

‘a’ of the box and has elastic collisions with the 

Walls. Therefore the potential energy of the electron inside the box is constant and can be 

taken as zero for simplicity 

 

∴ Outside the box and on walls of the box, the potential energy V of the electron is α. Inside the box the 

potential energy of the electron is zero 

 

 i.e., the boundary condition is  𝑉(𝑥) =  0 𝑤ℎ𝑒𝑛 0 < 𝑥 < 𝑎 

                            𝑉(𝑥) =  𝛼 𝑤ℎ𝑒𝑛 0 ≥ 𝑥 ≥ 𝑎 

 Since the particle cannot exist outside the box and thus wave function  ψ = 0  at 0 ≥ 𝑥 ≥ 𝑎  

  

 Now, Consider the Schrodinger one dimensional time independent wave function 

 
2

2 2

2
0

m
E V

x





  


         

Since the potential energy inside the wall is zero, the particle has kinetic energy alone. Hence it is called free 

particle (electron), now the above equation becomes 

2

2 2

2
0

m
E

x





 


 

V = 𝛼                  V = 𝛼 

 

      V  Electron        

 

X =0  Length (a ) x =a 

   fig 4.14 
  
   



 

 

 

 (or) 
2

2

2
0k

x





 


                       (1) 

 

 Where  2

2

2mE
k                                     (2) 

 The second order differential equation of equation (1) has two arbitrary   constants 

  

 ∴ The solution of equation (1) is ( ) sin cosx A kx B kx                                              (3) 

  

Where A & B are arbitrary constants which can be found by applying the boundary conditions  

   

Condition (i) at x =0, potential energy V = 𝛼. Hence there is no particle at the walls of the box, 

 therefore ψ(x) = 0 Equation (3) becomes  0 sin 0 cos0A B   

                                                         =     0    + B (1) 

              ∴B = 0 

  Condition (ii) at x = 𝑎, potential energy V =𝛼 there is no particles at the walls of box   ∴ ψ(x) = 0 

  Now, Equation (3) becomes 0 sin cosA ka B ka   

  (or) 0 sin 0A ka           [∵B =0 from condition (i)]   

  Also A is a Constant & hence 0;sin 0A ka    

  Thus, we can write as sin 0n    

  Comparing these two equations we can write ka n , where ‘n’ is a integer 

  (or)  
n

k
a


                                     (4) 

  Substituting the value of B & k in equation (3) 

  The wave function in one dimensional box is   ( ) sin
n x

x A
a




 
  

 
                             (5) 

  Energy of the particle (electron) 

 

   Equation (2) can be rewritten as 2

2

2

2

4

mE
k

h




 
  
 

                 
2

h



 
 

 
  

  (or) 
2

2

2

8 mE
k

h


                                 (6) 

  Squaring equation (4), we get   
2 2

2

2

n
k

a


                              (7) 

  Equating equation (6) & (7) we get 



 

 

 
2 2 2

2 2

8 mE n

h a

 
  

 ∴ The Energy of the particle (electron) 
2 2

28
n

n h
E

ma
                                  (8) 

 

From equation (5) & (8) we can say that for each value of ‘n’ there is energy 

Level with the corresponding wave function and hence each En is said to be Eigen value corresponding to 

the Eigen function ψn 

 

Energy levels of an electron: 

 

The ground energy state can be calculated by substituting n = 1 in equation (8), we get, 
2

1 28

h
E

ma
  

For n=2, 
2 2

2 12

2
4

8

h
E E

ma
  ; For n=3, 

2 2

3 12

3
9

8

h
E E

ma
  , etc., 

Similarly we can calculate ‘n’ number of energy levels by substituting n=1, 2, 3… n. 

 In general we can write 𝐸𝑛 =  𝑛2𝐸1  2
1nE n E                                            (9) 

From these levels, it is found that each energy level of an electron is discrete  

The various Eigen values corresponding to their Eigen function is shown in figure 4.15(a) 

 

 

 

 

   

  

 

 

 

Normalization of the wave function  

 

It is process by which the probability (P) of finding the particle (electron) inside the box 

We know that if (P) = 1 then the particle lies inside the box 

 

∴ Probability of 1 – D box of length ‘l’ is   2

0

1

a

P dx                           (10)  

 [∵ 𝑡ℎ𝑒 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑙𝑖𝑒𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 0 𝑎𝑛𝑑 𝑙  ] 

 

Substituting equation (5) in equation (10) we get 

   

 V =α       V =α 

E4      Ψ4  n=4 

E3     ψ3  n=3 

E2    ψ2   n=2 

E1    ψ1  n=1 
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1
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1
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

 
 
         

     
  
  

                                                                 (11) 

 

We know that sin n𝜋 = 0 ∴ sin 2𝑛𝜋 = 0 

Equation (11) can be rewritten as 
2

1
2

A a
   

(or)  2 2
A

a
  

(or) 
2

A
a

  

Substituting the value of ‘A’ in equation (5), we get 

 

2
( ) sinn

n x
x

a a




 
  

 
                                                                                                       (12) 

Equation (12) is said to be normalized wave function 

 

 

5. Write a brief note about the working mechanism of Scanning Tunneling Electron Microscope with 

necessary diagrams? 

Principle 

 The tunneling of electron between the sharp metallic tip of the probe and the surface of the sample. Here 

the tunneling current is maintained by adjusting the distance between the tip and the sample, with an air 

gap for electron to tunnel. IN a similar way the tip is used to scan atom by atom and line by line of the 

sample and the topography of the sample is recorded in the computer 

 

Construction 

 

 

n=4                                |𝜓4|2                   E=4 

 

n=3                                 |𝜓3|2                   E=3 

 

n=2                                 |𝜓2|2                   E=2 

 

n=1                                  |𝜓1|2                  E=1    

n=0                                                             E=0 

 



 

 

(i) The experimental setup consists of a probe in which a small thin metal wire is etched in such a way 

that the tip of the probe will have only one atom as shown in figure.  

(ii) The tip is tapered down to a single atom, so that it can follow even a small change in the contours 

of the sample.  

(iii) The tip is connected to the scanner and it can be positioned to X, Y, Z coordinates using a personal 

computer, as shown in figure.  

(iv) The sample for which the image has to be recorded is kept below the tip of the probe at a particular 

distance (atleast to a width of 2 atoms spacing) in such a way that the tip should not touch the sample. 

i.e., A small air gap should always be maintained between the tip of the probe and the sample.  

(v) The computer is also used to record the path of the probe and the topography of the sample in a 

grey-scale (or) colour. Necessary circuit connections along with an amplifier are provided to 

measure the tunneling current in the circuit 

 

 

 

 

                                                                                                        Amplifier 

 

     Probe 

                                                                                          Tunneling current 

 

 

 

 

  

Tip                                                                       Sample                                              Biasing voltage 

 

 

 

 

                                                                                               Probe 

                    Bumps 

                                                                                                Tip 

          Path of the probe 

                                                                                              Tunneling current 

         Surface of the sample 

Working 

1. Circuit is switched ON and necessary biasing voltage is given to the probe. 

2. Due to biasing the electrons will tunnel (or) jump between the tip of the probe and the sample and 

therefore produces a small electric current called tunneling current as show in figure. 

3. The tunneling current flows through the circuit only if the tip is in contact with the sample through 

the small air gap at a distance ‘d’ between them. 

4. The current produced is amplified and measured in the computer 

5. It is found that the current increases (or) decreases based on the distance between the tip of the probe 

and the sample 

6. The current in the circuit should be monitored in such a way that it should be maintained constant 

7. Therefore, for maintaining the constant current, the distance (d) between the tip and the sample 

should be continuously adjusted, whenever the tip moves over the surface of the sample. 

Computer & scanner 

 

 

 

       (d) 



 

 

8. The height fluctuations (d) between the tip and the sample is accurately recorded and as a resultant, 

a map of ‘bumps’ is obtained in the computer as shown in figure. 

9. In a similar way the tip is scanned atom by atom and line by line of the sample and the topography 

of the sample is recorded in the computer. 

10. The STM does not show the picture of the atom, rather it records only the exact only the exact 

position of the atoms, more precisely the position of electrons. 

Advantages 

1. It can scan the positions & topography atom by atom (or) even electrons 

2. It is the latest technique used in research laborites for scanning the materials 

3. very accurate magnification up to nan-scale shall be measured. 

Disadvantages 

1. Even a very small vibrations will deviate the measurement setup 

2. it should kept in vacuum, because even a single dust particle will damage the tip of the probe 

3. cost is high 

Applications 

1. it is used to produce integrated circuit 

2. it is used in biomedical devices 

3. they are used in materials science studies for both bump and flat surfaces 

 

6. What are matter waves? Give its properties. Write the brief note on experimental verification of 

matter’s waves using G.P. Thomson experiment? 

According to de-Broglie hypothesis, a moving particle is always associated with waves. 

(i) Waves and particles are the only two modes through which energy can propagate in nature 

(ii) Our universe is fully composed of light radiation and matter 

(iii) Since nature loves symmetry, so matter and waves must be symmetric. 

The waves associated with the matter particles are called matter waves or de-Broglie waves. 

From Planck’s theory, the energy of a photon of frequency υ is given by E = h υ  (1) 

According to Einstein’s mass energy relation, E = mc2     (2) 

Where m – mass of a photon, c – velocity of a photon 

Equating (1) and (2), we get 

h υ = mc2           (3) 

ℎ𝑐

𝜆
= 𝑚𝑐2 

𝜆 =  
ℎ

𝑚𝑐
                        (4) 

Since mc=p momentum of photon, then 



 

 

𝜆 =  
ℎ

𝑝
                       (5) 

According to de-Broglie hypothesis, the wavelength of de-Broglie wave associated with any moving 

particle of mass ‘m’ with velocity ‘v’ is given by  

𝜆 =  
ℎ

𝑝
=  

ℎ

𝑚𝑣
                      (6) 

In terms of Energy 

We know that K.E  (E)= 
1

2
𝑚𝑣2 

Multiply m by both sides    mE= 
1

2
𝑚2𝑣2 

(or) √2𝑚𝐸 = 𝑚𝑣 

(or) √2𝑚𝐸 = 𝑝 

We know that, 𝜆 =  
ℎ

𝑝
  and hence 

(or) de-Broglie wavelength  𝜆 =  
ℎ

√2𝑚𝐸
 

In terms of electrons 

We know that kinetic energy in terms of electron volt is given by eV= 
1

2
𝑚𝑣2 

Multiply m by both sides    eV= 
1

2
𝑚2𝑣2 

(or) √2𝑚𝑒𝑉 = 𝑚𝑣 

(or) √2𝑚𝑒𝑉 = 𝑝 

We know that, 𝜆 =  
ℎ

𝑝
  and hence 

(or) de-Broglie wavelength  𝜆 =  
ℎ

√2𝑚𝑒𝑉
 

Properties of Matter 

(ix) Matter waves are not electromagnetic waves. 

(x) Matter waves are new kind of waves in which due to the motion of the charged particles, 

electromagnetic waves are produced. 

(xi) Lighter particles will have high wavelength 

(xii) Particles moving  with less velocity will have high wavelength 

(xiii) The velocity of matter wave is not a constant, it depends on the velocity of the particle. 

(xiv) If the velocity of the particle is infinite then the wavelength of matter wave is 

indeterminate(λ=0) 

(xv) The wave and particle aspects cannot appear together 

(xvi) Locating the exact position of the particle in the wave is uncertain 

 

 



 

 

Experimental verification of matter waves – G.P. Thompson’s Experiment 

Construction & Working 

A high energy electron beam is produced by the cathode C. The beam is excited with potentials up to 50,000 

volts. A fine pencil beam is obtained by passing it through the slit or diaphragm S. The accelerated fine 

beams of electrons are made to fall on a thin film of gold G or aluminum of the order of 10-6 cm. The 

photograph of the beam from the foil is recorded on a photographic plate P.  

The whole apparatus is exhausted to a high vacuum so that the electrons may not lose their lose their energy 

in collision with the molecules of the gas. After developing the photographic plate, the resultant diffracted 

pattern obtained as shown in figure 

Since ordinary metals like gold are microcrystalline in structure, the diffracted electrons produced by them 

are similar in appearance to the X – ray diffraction powder patterns and consists of a series of well-defined 

concentric rings about a central spot as shown in figure. To make sure that this pattern is due to the electrons 

and not due to any possible X – rays generated, the cathode rays in the discharge tube are deflected by a 

magnetic field. It was observe that the whole diffracted pattern, observed on the fluorescent screen placed 

instead of photographic plate also shifted. Once it is confirmed that the diffraction pattern is due to the 

electrons. Thomson calculated the wavelength of the deBroglie waves associated with the cathode rays and 

determined the spacing between the atomic planes in the foils using Bragg’s equation. He obtained results 

in good agreement with those from X – ray studies. 

 

cathode C                   Slit S                     Gold foil               Photographic plate 

 

 

 


