
 

 

5.  Nano Devices 

Part – A 

1. Define nano materials 

Nano phase materials are newly developed materials with grain size at the nanometre 

range (10-9) in the order of 1 - 100 nm. 

2. Define density of energy states 

Density of energy is define as the number of available energy states per unit volume per 

unit energy in a solid.  

3. What is quantum structure? 

When a bulk material is reduced in its size, atleast one of its dimension, in order of few 

nanometres, then the structure is known as quantum structure. 

4. What is quantum confinement? 

The effect is achieved by reducing the volume of a solid so that the energy levels within it 

becomes discrete is called quantum confinement. 

5. Define coulomb blockade effect 

The charging effect which blocks the injection or rejection of a single charge into or from 

a quantum dot is called Coulomb blockade effect. 

6. What is single electron phenomena? 

The phenomena of keeping single electron or quantum dot in isolation without tunnelling  

7. What is single electron transistor? 

A transistor made from a quantum dot that controls the current from source to drain one 

electron at a time is called single electron transistor. 

8. What is single electron tunnelling? 

The quantization of charge can dominate and tunnelling of single electron across leaky 

capacitors carriers the current. This is called single electron tunnelling. 

9. What are quantum dot lasers? 

A quantum dot laser is a semiconductor laser that uses quantum dots as the active medium 

in its light emitting region  

10. What are the advantages of quantum dot lasers? 

(i) Broad spectrum with a specific Wavelength of light emission can be obtained by 

changing dot size. 

(ii) Because of very small active volume, only very less population inversion is necessary 

for lasing.  

11. What is a carbon nano tube? 

The carbon nano tubes are the wires of pure carbon with rolled sheets of graphite like a 

soda straw 

12. What are the types of carbon nano tube structure? 

(1) Armchair structure  (ii) Zig- zag structure (iii) Chiral structure 

13. How carbon nanotubes are classified? 

Based on number of layers, the carbon nanotubes are classified as 

(i) Single walled carbon nano tubes (SWCNT) (ii) Multi walled carbon nanotubes 

(MWCNT). In MWCNT, more than one CNTs are coaxially arranged. 

14. What is meant by Tunnelling? 

The phenomenon in which a particle, like an electron, encounters an energy barrier in an 

electronic structure and suddenly penetrates is known as tunnelling. 

15. Define quantum well, quantum wire and quantum dot 



 

 

An electrically isolated region, like a thin film, where electrons are constrained in one 

dimension and exhibiting quantum behaviour is called quantum well 

An electrically isolate region, like a nanotube or nano wire, where electrons constrained in 

two dimensions and exhibiting quantum behaviour is called quantum wire 

An electrically isolated region, such as a particle or a portion of a bulk semiconductor, 

where electrons are constrained in all three directions, creating an artificial atom that 

exhibit quantum behaviour is called quantum dot. 

16. What is meant by Ballistic transport? 

When the mean free path of the electron is longer than the dimension of the medium 

through which the electron travels is called Ballistic transport. 

Condition: L<<Lm 

17. Define quantum conductance 

The quantum conductance ‘G0’ is the quantized unit of electrical conductance 
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18. Define quantum resistance 

The reciprocal of quantum conductance is called quantum resistance (R0) 
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19. What are the disadvantages of quantum dot laser? 

(i) It is very difficult to form high quality dots (uniform size and higher density) 

(ii) Difficult to manufacture because of nano meter size 

20. Explain the rules which used for the single electron phenomena? 

(i) The energy needed to add one electron to the dot, or charging energy EC must be 

significantly higher than the thermal energy of an electron  
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(ii) The uncertainity of the charging energy must be less than the charging energy itself. 
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21. Write down any two applications of carbon nano tube. 

(i) It is used to make a computer switching device 

(ii) It is used in battery technology in which lithium (charge carriers) can be stored 

inside nanotube. 

(iii) It is used for storing hydrogen which is used in the development of fuel cells 

(iv) It can be used to increase the tensile strength of steel 

(v) Plastic composite CNT provides shielding from electromagnetic radiation. 

(vi) It acts as catalysts for some chemical reactions. 

22. What are the applications of quantum dot laser? 

(i) QD laser are used in medicine (optical coherence tomography) 

(ii) QD lasers are used in display technologies, spectroscopy and telecommunications. Q 

lasers are used in optical transmission system a LANs. 

23. What will happen when the volume is reduce from that of solid to a nano material? 

(or) what is quantum size effect? 

If we decrease the size of the particle to nano size smaller than de Broglie wavelength, the 

decrease in confining size creates the energy levels discrete. The formation of discrete 



 

 

 

energy levels widens the band gap and finally the band gap energy also increases. Quantum 

size effect is most significant for nanoparticle semiconductor. 

24. How the density of the states is proportional in 1D, 2D and 3D? 

In 1D, D(E) α E-1/2 

In 2D, D(E) α E 

In 3D, D(E) α E1/2 

25. What is quantum structure? 

When a bulk material is reduced in its size, atleast one of its dimension, in the order of few 

nanometres, then the structure is known as quantum structure. 

             Part – B 

1. Discuss density of states in quantum well, quantum wire and quantum dot structure. 

The quantum well can be displayed with dimensions of length a, where the electrons of 

effective mass are confined in the well as shown in fig.                     ny 
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The two dimensional density of states is the number of states per unit area and unit energy. 

Consider the electron in a two dimensional bounded region of space. We want to find how 

many quantum states lie within a particular energy, say, between E and E+dE as shown in 

Figure. 

The reduced phase space now consists only the x- y plane and nx and ny coordinates. 

In 2D space, n2 = nx
2 + ny
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Derivation 

The number of available states within a circle of radius ‘n’ is given by 21

4
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Here only one quarter of circle will have positive integer values 

The number of states within a circle of radius n+dn is given by  
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The number of available energy states lying in an energy interval E and E+dE 
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      As dn2 is very small, we can neglect dn2. Therefore we get, 
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Substitute the value of equation (3) and (4) in equation (1), we get 
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m* is the effective mass in the quantum well   
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Put a2 = A area of circle 

According to Pauli’s exclusion principle each energy level can occupy two electrons of 

opposite spin 

i.e., 
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Number of quantum states per unit area and unit energy is 
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The density of states in two dimensional is given by 
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Where E0 is the ground state of quantum well 
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Where En are the energies of quantized states and ( )nE E  is step function. 

From equation (7), the density of states in two dimension is constant with respect to the energy. 

 i.e., ' 2 0( ) DZ E E  constant 
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Density of states in quantum wire 

Consider the one dimensional system, the quantum wire in which only one direction of motion 

is allowed. (eg. Along x – direction). 

In one dimension, such as for a quantum wire, the density of states is defined as the number of 

available states per unit length per unit energy around an energy E. The electron inside the wire 

are confined in a one dimensional infinite potential well with zero potential inside the wire and 

infinite potential outside the wire. 

At x = 0; V(x) = 0 for an electron inside the wire 

At x = a; V(x) = α for an electron outside the wire 

The reduced phase space now consists only the x plane and nx coordinates are shown in figure. 

In one dimensional space n2 = nx
2 

The number of available energy states lying in an interval of length is 

Z’(E)dE = n +dn –n = dn                                                                                     (1) 

Substitute the value of dn from equation (4), we get 
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According to Pauli’s exclusion principle, two electrons of opposite spin can occupy each 

energy state. 
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Number of quantum states per unit length and unit energy is 
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If the electron has potential energy E0 we have 
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From equation (4) the density of states in one dimensional system has a functional dependence 

on energy Z(E)1D α E-1/2  

For more than one quantized state, the one dimensional density of states is given by  
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Where En are the energies of the quantized states of the wire and ( )nE E  is the step function. 

The density of states in quasi-continum (or) quantum wire is shown in figure. The 

discontinuities in the density of states are known as Van Hove Singularities   



 

 

Density of states in Quantum dot 

In a zero dimensional system, the density of states are truly discrete and they don’t form a 

quasi continum. 

In zero dimensional system (quantum dot), the electron is confined in all three spatial 

dimensions and hence to motion of electron is possible. Each quantum state of a zero 

dimensional system can therefore be occupied by only two electrons. So the density of states 

for a quantum dot is merely a delta function. 
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Here, the factor 2 accounts for spin. For more than one quantum state, the density of states is 
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2. Describe the carbon nano tubes with their properties and applications 

 

The hexagonal lattice of carbon is simply graphite. A single layer of graphite is called 

graphene. CNT consists of a graphene layer rolled up into a cylindrical shape like a single 

molecule where each molecule nanotube is made up of a hexagonal network of covalently 

bonded carbon atoms Eg: fullerene. In some cases, the hexagon are arranged in a spiral form, 

the layer appears like a net having a large hexagonal mesh. The carbon nanotubes are hollow 

cylinders of extremely thin diameter, 10,000 times smaller than a human hair.  

Structures of CNT 

The CNTs have many structures on the basis of their length, type of spiral and number of 

layers. Their electrical properties depend on their structure and they act as either a metal or a 

semiconductor. 

Types of CNT: 

(i) Arm chair  

(ii) Zigzag 

(iii)  Chiral 

 The axis of tube parallel to c-c bonds of the carbon hexagons are arm chair  

 The axis of the tube is perpendicular to c-c are zigzag structure 

 The axis of tube is inclined to c-c are chiral structure  

Classification: 

(i) Single walled CNTs 

(ii) Multi walled CNTs 

in Multiwalled CNTs more than one CNTs are coaxially arranged 

Properties: 

Electrical: 

(i) CNTs are metallic (or) semi conducting depending on diameter of chirality 



 

 

(ii) The energy gap of semiconducting chiral carbon nanotubes is inversely proportional to 

the diameter of tube. 

(iii) The energy gap also varies along the tube axis and reaches a minimum value at the tube 

ends. This is due to the presence of localised defects at the ends due to the extra energy 

states. 

(iv) In SWCNT conduction occurs through discrete electronic states that are coherent between 

the electrical contacts. 

Mechanical: 

(i) The strength of C – C bond is very high leading to ultimate tensile strength 

(ii) Young’s modules is 5 times greater than steel.  

(iii) Tensile strength is 50 times higher than steel 

(iv) Carbon nanotubes have ability to withstand extreme strength 

(v) It can recover from severe structural distortions due to rehybridization 

(vi) The strength of sp2 C-C bond gives high hardness for CNTs 

Physical  

(i) It have a high strength to weight ratio. This is indeed useful for light weight applications. 

(SWCNT →ρ = 0.8 g/cm3; MWCNT →ρ = 1.8 g/cm3). 

(ii) The surface are of nanotubes is of the order of 10-20 m2/g which is higher than that of 

graphite. 

Chemical 

(1) They are highly resistant to any chemical reaction.it is difficult to oxidize them and the on 

set of oxidation in nanotubes is 100° C higher than that of carbon fibres. 

 

    Thermal 

     Nanotubes have a high thermal conductivity and the value increase with decrease in diameter 

Applications: 

(i) It is used in development of flat panel displays 

(ii) It is used to design LEDs, FET and as switching devices 

(iii) It is used to produce battery, solar and fuel cells 

(iv) It is used as sensitive detector of various gases. 

(v) It is used as a catalyst for chemical reactions. 

(vi) It provides light weight shielding material for electromagnetic radiation 

(vii) It is  used in nano scale electronic devices 

(viii) CNTs are used in drug delivery 

 



 

 

 

3. Explain the electron density in bulk material and size dependent of fermi energy 

 

The bulk material is a collection of atoms having properties that are from individual atoms. The 

nanomaterials gives unique electronic properties.one of the mayor difference in nanomaterials 

with respect to bulk materials is the number of available energy states. In a bulk material, the 

states within each energy sublevel are so close that they blend into a band. 

The total number of electron states N with energies up to E, can be determined based on the 

equation  
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Here, we represent the volume as V, m is the mass of an electron an h is the Planck’s constant. 

The number of energy states per unit volume is given by 
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Density of states is defined as number of available electron energy states per unit volume, per 

unit energy i.e., Z(E) = dn / dE                      (3) 

Hence equation (2) becomes, 
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From equation (4), the density of states for a bulk material is directly proportional to square 

root of energy 

i.e., Z(E) α √E               (5) 

The relevant application of density of states is that it provides information about nanomaterials. 

Here, the fermi function gives the probability of occupation by the free electrons in a given 

energy state. 

i.e., 
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Then, the number of free electrons per unit volume is 
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Put F(E) = 1 at T = 0K, then 
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Size dependence of Fermi energy 

In terms of the distribution of energy, solid have thick energy bands, whereas atoms have thin, 

discrete energy states. Hence to make a solid behave electronically more like an atom, we need 

to make it about the same size as an atom. 



 

 

Hence rearranging equation (7) , we get 
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In the above equation, ‘n’ is the only variable. 

Equation (8) suggests that the fermi energy of a conductor depends on the number of free 

electrons ‘N’ per unit volume ‘V’   
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Since the electron density is a property of the material, the fermi energy does not vary with 

material’s size. EF is same for a particle or for a brick of copper. Hence the energy state will have 

the same range for small volume and large volume of atoms. But for small volume of atoms we 

get larger spacing between states. This is applicable to semiconductors and insulators. 

Let us consider that all states up to EF(0) are occupied by a total of free electrons (N).
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From equation (9) & (10),  
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Thus, the spacing between energy states is inversely proportional to the volume of the solid. The 

energy sublevel and the spacing between energy states within it will depend on the number of 

atoms as shown in figure. At one point, we know that an energy sublevel must be divided as 

many times as there are atoms in a solid, which eventually results too many splits to differentiate. 

Hence, we just refer to each sublevel as a solid energy band. On the other hand, a single atom in 

the sublevel contain only one discrete energy state. If we reduce the volume of s solid, the tiny 

piece of material behaves electronically like an artificial atom. 

      

4. Discuss quantum size effect and band structure of nano crystals. 

 

When the size of a nanocrystal becomes smaller than the deBroglie wavelength, electrons an 

holes gets spatially confined, electrical dipoles gets generated, the discrete energy levels are 

formed. As the size of the material decreases, the energy separation between adjacent levels 

increases. The density of states of nanocrystals is positioned in between discrete (as that of atoms 

and molecules) and continuous (as in crystals). 

 Quantum size effect is most significant for semiconductor nanoparticles. In 

semiconductors, the bandgap energy is of the order of few electron volts and increases with a 

decrease in particle size. 

 When photons of light fall in a semiconductor, only those photons with energy are 

absorbed and a sudden rise in absorption is observed when the photon energy is equal to the 

bandgap. 

 As the size of the particle decreases, absorption shifts towards the shorter wavelength 

(blue shifts) indicating an increase in the bandgap energy .A change in absorption causes a 

change in the colour of the semiconductor nanoparticle. 

 For example, bulk cadmium sulphide is orange in colour and has a bandgap of 2.42eV. It 

becomes yellow and then ultimately white as its particle size decreases and the bandgap 

increases. 

 

 



 

 

 

 
 

5. Explain the single electron phenomena and Describe the construction and working of 

single electron transistor 

Single electron phenomena 

Transistors are what computers used to compute-tiny switches turning on and off, transferring 

and amplifying signals, making logic decisions. Today, microchips have over a billion 

transistors, each one turning on and off a billion times every second. These chips require 

manufacturing processes with roughly 100-nm resolution. And every year this resolution drops, 

enabling even smaller transistors, so that even more of them can be squeezed into the same 

amount of space. Rather than moving torrents of electrons through transistors, it may very well 

be practical and necessary to move electrons one at a time.  We can use transistors to make 

sensitive amplifiers, electrometers, switches, oscillators, and other digital electronic circuits all 

of which operate using single electrons 

Rules for single electron phenomena to occur 

Tunnelling is the way electrons cross both the physical barriers and the energy barriers separating 

a quantum dot from the bulk material that surrounds it. If any electron on one side of the barrier 

could just tunnel across it, there would not be any isolation. The dot would not be a quantum dot 

because it would still essentially be part of the bulk. 

So we need to be able to control the addition and subtraction of electrons. We can do 

this with voltage biases that force the electrons around. There are two rules for preventing 

electrons from tunnelling back and forth from a quantum dot. 

(i) Coulomb blockade effect 

(ii) Overcoming uncertainity 

Rule1: Coulomb Blockade effect 

A quantum dot has a capacitance, Cdot, a measure of how much electric charge it can store            

Cdot = G ɛ d           (1) 

Here, ε is the permittivity of the material surrounding the dot, d is the diameter of the dot, 

and G is a geometrical term (if the quantum dot is a disk, G = 4; if it is a spherical particle, 



 

 

G = 2π). An object isolated in space can store charge on its own and therefore can have a 

capacitance. 

The energy needed to add one negatively charged electron to the dot is known as the charging 

energy,  
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We know that the coulomb blockade can prevent unwanted tunnelling. Hence we can keep the 

quantum dot isolated, the condition for this is given by C BE K T                                           (3) 

Rule2: Overcoming uncertainity 

The uncertainty in the energy of a system is inversely proportional to how much time we have 

to measure it. Specifically, the energy uncertainty, ΔE, adheres to this relationship 
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Here, h is Planck’s constant and Δt is the measurement time. Since it is a tiny capacitor, the time 

we use for Δt is the capacitor’s time constant (the characteristic time a capacitor takes to acquire 

most of its charge). The time constant of a capacitor is RC, where R is the resistance and C is the 

capacitance. In our case, the resistance is the tunnelling resistance, Rt, and the capacitance is Cdot. 

This gives us t dott R C                                                (5) 

Our goal is to keep electrons from tunnelling freely back and forth to and from the dot. To ensure 

this, the uncertainty of the charging energy must be less than the charging energy itself. 

For maintaining electron isolation in quantum dot, we need c cE E                                       (6) 

Substituting  equation (2), (4) and (5) in (6), we get 
2

2t dot dot

h e

R C C
       (7) 

In otherwords, 
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Meeting this criterion is often as simple as making sure the insulating material surrounding the 

dot is thick enough. These two rules help in building a single-electron transistor (SET) 

Single electron transistor (SET) 

Principle 

A transistor with three terminal switching device made from a quantum dot that controls the 

current from source to rain one electron at a time is called single electron transistor 

 

Construction 

The single electron transistor (SET) is built like a conventional Field Emitting Transistor (FET). 

It has tunnelling junctions in place of pn – junctions and quantum dot in place of the channel 

region of the FET. To control tunnelling, a voltage bias to the gate electrode is applied. A separate 

voltage bias is applied between source and drain electrodes for the current direction. For current 

to flow, gate bias voltage must be large enough to overcome the coulomb blockade energy. 

Working 



 

 

1. The purpose of SET is to individually control the tunnelling of electrons into an out of the 

quantum dot. To do this, we must first stop random tunnelling by choosing the right circuit 

geometry and materials. If an electron comes or goes from the dot. It will on purpose 

2. To control tunnelling, we apply a voltage bias to the gate electrode. There is also a voltage 

difference between the source and the drain that indicates the direction of current. Here, we 

can say that current and electron flow in the same direction and we will consider the electrode 

from which the electrons originate.  

3. This is similar to the working of FET, where the gate voltage creates an electric field that 

alters the conductivity of the semiconducting channel below it, enabling current to flow from 

source to drain. 

4. Applying a voltage to the gate in an SET creates an electric field and change the potential 

energy of the dot with respect to the source and drain. This gate voltage controlled potential 

difference can make electrons in the source attracted to the dot and simultaneously electrons 

in the dot attracted to the drain. 

5. For current to flow, this potential difference must be atleast large enough to overcome the 

energy of the coulomb blockade. 

The energy “E” needed to move a charge e across a potential difference V is given by E=Ve 

So, the voltage that will move an electron onto or off the quantum dot is given by 

cE
V

e
   (or) 

2

2 2dot dot

e e
V

C C

e

            (1) 

With this voltage applied to quantum dot, an electron can tunnel through coulomb blockade of 

the quantum dot.  

Working for single electron transistor in nutshell 

A single electron transistor is shown in figure. As opposed to the semiconductor channel in a 

field effect transistor, the SET has an electrically isolated quantum dot located between the 

source and drain. 

1. The SET is OFF mode. The corresponding potential energy diagram shows that it is not 

energetically favourable for electrons in the source to tunnel to the dot as shown in figure. 

2. The SET is ON mode. At the lowest setting electrons tunnel one at a time, via the dot, from 

the source to the drain as shown in figure. 

3. This is made possible by first applying the proper gate voltage, Vgate = e/2Cdot, so that the 

potential energy of the dot is made low enough to encourage an electron to tunnel through the 

coulomb blockade energy barrier to the quantum dot. 

4. Once the electron is on it, the dots potential energy rises as shown in figure  

5. The electron then tunnels through the coulomb blockade on the other side to reach the lower 

potential energy at the drain as shown in figure. 

6. With the dot empty and the potential lower again the process repeats as shown in figure. 

  

Advantages 

1. The fast information transfer velocity between cells is carried out via electrostatic 

interactions only. 



 

 

2. No wire is needed between arrays. The size of each cell can be can be as small as 2.5nm. 

This made them suitable for high density memory. 

3. This can be used for the next generation quantum computer. 

Limitations 

1. In order to operate SET circuit at room temperature, the size of the quantum dot should 

be smaller than 10nm 

2. It is very hard to fabricate by traditional optical lithography and semiconductor processes 

3. The method must be developed for connecting the individual structures into logic circuits 

and these circuits must be arranged into larger 2D patterns. 

Applications 

1. SET are used in sensor and digital electronic circuits 

2. Variety of digital logic functions, including AND or NOR gates, is obtained based on 

SET operating at room temperature. 

3. It is used for mass storage 

4. It is used in highly sensitive electrometer. 

5. SET can be used as a temperature probe, particularly in the range of very low 

temperatures. 

6. SET is a suitable measurement setup for single electron spectroscopy. 

7. It is used for the fabrication of  homo-dyn receiver operating at frequencies between 10 

and 300 MHz 

 



 

 

 

 

8. Describe principle, construction and working of quantum dot laser. 

 

Principle 

A quantum dot laser is a semiconductor laser that uses quantum dots as the active medium 

in its light emitting region. 

Construction 

Figure shows a quantum dot near infrared laser diode grown on an n doped GaAs substrate. 

The top p metal layer has a GaAs contact layer. Immediately below it there are a pair of 2μm 

thick Al0.85Ga0.15As cladding bounding layers that surrounds a 190 nm thick waveguide made 

of Al0.05Ga0.95As in between p metal and n substrate. The front view of quantum laser diode 

is shown in figure. Here the waveguide plays the role of conducting the emitted light to the 

exit ports at the edges of the structure. 

The waveguide is a 30 nm thick GaAs region, an centred in this region are 12 monolayers of 

In0.5Ga0.5As quantum dots with a density of 1.5 X 10-10 cm2. The details of the wavelength 

region is drawn below 



 

 

     Working 

1. The electron and hole recombination causes the emission of laser light. 

2. By varying the length Lc and width W the laser light with particular wavelength will be 

emitted. 

3. A particular wavelength of 1.32 μm which is near infrared region can be produced for a 

current setting just above the 4.1mA threshold value, labelled point a as shown in 

figure. 

4. The faces of the layer were coated with high reflected material where the light is 

reflected back and forth to increase the stimulated emission and in turn the laser 

emission is enhanced. 

   

 

 

 

 

 



 

 

 

9. Write short notes on 

(i) Ballistic transport (ii) Quantum resistance (iii) quantum conductance 

Ballistic transport 

Definition 

When the mean free path of the electron is longer than the dimension of the medium through 

which the electron travels is called ballistic transport 

Explanation 

When the length L of the conductor becomes much smaller than the mean free path Lm the 

transport is termed ballistic meaning that the electrons do not scatter during the time it takes to 

travel through the conductor. 

For example, ballistic transport can be observed in a metal nano wire. This is because the wire 

is of the size of a nanometer and the mean free path can be longer than in a metal.  

Condition for ballistic transport 

The mean free path can be increased by reducing the number of impurities in a crystal 

or by lowering its temperature. 

i.e., L<<Lm and L<<Lφ 

where L length of the conductor, Lm mean free path, Lφ length over which an electron 

can travel before having an elastic collision. This is also called phase coherence length 

since it is the length over which an electron wave function retains its coherence. For 

L<<Lm and L<<Lφ, we have ballistic transport. Ballistic transport occurs over very 

small length scales, and is obviously coherent. 

The electron does not hit anything as it travels through the material and therefore there 

is no momentum or phase relaxation. Thus in ballistic material, the electron wave 

function can be obtained from schrodinger’s equation. 

Application 

It is used in ultra-short channel semiconducting FETs or carbon nanotube transistors.  

Quantum conductance and resistance 

The quantum conductance is the quantised unit of electrical conductance denoted by 
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The reciprocal of the quantum conductance is quantum resistance denoted by R0 
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Derivation 



 

 

A one dimensional quantum wire connects adiabatically two reservoirs with chemical potential 

μ1 and μ2. The connections are assumed to be non-reflecting. 

Reservoirs with chemical potential μ1 and μ2 

It is also assumed that the wire is sufficiently narrow so that only the lowest transverse mode in 

the wire is below the fermi energy (EF) 

The current density is given by J = -nevd                                                                                     (1) 

The density of electrons is determined by  
1 1 1
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Substituting equation (2) in (1), we get  1 2 d

dn
J eV

dE
             (3) 

where dn/dE is the density of states. 

We know that E = N h ν             (4)  

Where N is the number of electrons 

We know that 
. .N No ofelectrons No ofelectrons N

n
V volume length area A l

   
 

  

Therefore N = nAl             (5) 

Substituting equation (5) in (4). We get  

E = n h ν A l 

Differentiating we get  

dE = dn h ν A l 

1dn

dE h Al
                (6) 

According to spin degeneracy, multiply equation (6) by two, we get 

2dn

dE h Al
              (7) 

If V is the voltage between two reservoirs, then we can write 

1 2 eV                  (8) 

Substituting equation (7) and (8) in equation (3) we get 
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We know that velocity = distance / time an frequency = 1/ time 

d

l
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and  
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Substitute (10) and (11) in (9), we get 
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Therefore equation (13) can also be rewritten as 

2

0
0

1 2e
G

R h
             (13) 

Therefore quantum conductance 
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Here G0 is a fundamental unit 

If there are N electronic channels, then equation (14) becomes 
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i.e., G = G0N 

similarly 0
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As the number of electronic channels increases, conductance increases and resistance decreases. 

The classical theory also predicts this behaviour, although the quantum theory shows that this 

happen in discrete steps, as the number of electron channel increases. 

As N gets very large, the electron channels essentially form a continum and the quantum theory 

tends towards the classical limit. 

 

10. Write a short note on conductivity of metallic nano wires. 

Consider a circular cross section wire which has a radius a and length L . Assume that L is very 

large relative to its mean free path. 

Let us assume a copper wire having radius a = 10 mm , R = 5.395 X 10-5 ohms / meter and σ 

=5.9 X 107 S/m. we need 18357m for 1Ω  resistance to be maintained in the given radius of the 



 

 

wire. For a = 10 μm, R = 53.05Ω /m amounting to 1 Ω in only 1.85 cm. If  a = 10 nm then the 

resistance is huge. 

Here the radius of the wire having radius on the order of its mean free path or less will have 

different conductance value compare to the bulk scale. For example, copper has a mean free 

path of approximately 40 nm and hence radius dependence effects usually occurs when the 

radius is double this value (80 – 100 nm). 

A 1 -20nm radius range, the conductivity values changes from the bulk value and decreases as 

the radius a decreases. This is due to scattering effect from the wire surface, grain boundaries, 

defect free metals at small scales. 

A relatively simple approximation for the resistivity of rectangular cross section of wires is 
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Where ρ0 – bulk resistivity 

            W – wire width 

            AR – aspect ratio (wire height / wire width) 

            d – average grain size 

      P – specularity parameter  

          Rc – grain boundary reflection coefficient 

        C – constant 

Here the first term is related to grain boundary scattering and the second term wire surface 

scattering. Both P and RC can take values between 0 and 1. The experimental results are      P = 

0.3 - 0.5 and Rc = 0.2 - 0.3. 

The proceeding model may work down to wire cross sectional dimensions on the order of   5 – 

10 nanometres. Below which a quantum wire model that accounts for transverse quantization 

would be necessary. However as complicated as surface and grain boundary scattering are, other 

factors also determine the conductivity of nanowire 


