1. Electrical Properties of Materials

1.1. Introduction

It is essential to study the various electrical properties of solids for their specific applications.
In terms of electrical properties, all solid state materials are classified as conductors,
semiconductors and insulators. The selection of different applications depends on their
electrical properties and the nature of the requirement (materials).Electrical phenomena caused
by the motion of electrons in solids and find many applications in house holding and industrial
applications. For example, electrons in metallic filament and the property of electrical
resistivity of the material are used in incandescent lamps for heating. Similarly the mobility of
electrons is being exploited in solar cells, lasers, in control of thermonuclear reactions, etc.

This chapter going to reveal the electrical conduction, thermal conduction, density of states,
number of electrons per unit volume in a metal, etc. Besides, it also deals with classical free
electron theory, quantum free electron theory, Energy bands in solids, tight binding
approximation, electron effective mass and concept of the hole.

1.2 Arrival of Ohm’s law in microscopic point of view.

If a battery is connected in series with an ammeter and a piece of some material (copper,
Aluminium or such), a deflection in the ammeter will indicate a flow of charged particles (a
current i) through the circuit (see Fig.1). Simultaneously there will be a voltage drop V across
the sample as measured by a voltmeter. If the voltage of the battery is varied, i will vary
proportionally with V. It can therefore be stated that if a voltage V is applied across a sample,
a current proportional to it will flow:

V =iR )

where R is the proportionality constant and is called the resistance of the sample. Equation 1 is
known as Ohm's law.

\Y

SAMPLE

I
i L
Ohm's law can be restated in a microscopic form to understand the phenomenon of conduction
by concentrating attention on the sample. The fact that there is a potential difference V across
the sample means that there is an electric field E in the sample. If the sample is uniform in
geometry and quality, E will be constant, and it follows that
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V,, =V = [Edl = El )

Where | is the length of the specimen.

Given a certain potential difference (and therefore a certain E), the larger the cross-sectional
area A of the sample, the larger the current will be. (Think of the analogy of a pipe with flowing
water.) We can eliminate the geometric parameter A by introducing a new quantity, the current
density J, defined as the current per unit cross-sectional area.

i .
J=—(or)i=JA 3
A( ) ©)
Let us recollect the macroscopic Ohm’s law (V =iR) and substitute the value of i as well as the

value of V from equations (2) and (3), finally we get an equation as

El = JAR(0r)E =J #

where the quantity p = RA/I is called the electrical resistivity and has dimensions of ohm-
meters (Q-m). Ohm's law can be expressed another way by introducing the term electrical
conductivity, (c = 1/p), which has dimensions of reciprocal ohm-meters (Q-m) -'.

(or) E=Jp(or)E = %[’.' p=0c]

s.J=0oE (4)

1.3 Relationship between current density (J), drift velocity (va) and mobility (p).

Let n be the number of charge carriers per unit volume in a conductor of length | with uniform
cross sectional area A. The current flow through the conductor is given by

i Totalcharge(q)
Time(t)

()

Here the total charge depends on the number of electrons per unit volume (n), charge of one
electron (e), Area of cross section (A) and length of the conductor (I). Hence equation (5)
becomes

i— %e' ~ nAev, 6)

Here vg = I/t is called the drift velocity. It arises due to the movement of charges in the opposite
direction of the electric field

nAev,

We know that J :LA & Hence we can write J = (or)J =nev, (7)
From equation (4), we getoE = nev, (8)
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(or) o= neVE“(or)a =neu 9

Where p = vq / E is called the mobility of the charge carrier. It is defined as the drift velocity
per unit electric field. Its unit is m2v-1S™,

1.4. Free electron theory of solids

It is well known that the electrons in the outermost orbit of the atom determine the electrical
properties of a solid. The free electron theory of solids explains the structure and properties of
solids through their electronic structure. This theory is applicable to all solids, both metals and
non-metals. It explains:

1. The behaviour of conductors, semiconductors and insulators.
2. The electrical, thermal and magnetic properties of solids.

1.4.1 Versions of free electron theory

1. Classical free electron theory
The first successful attempt to understand the electrical properties of metals was
presented by P. Drude in 1900 and was extended by H. A. Lorentz in 1909. According
to this theory the free electrons are mainly responsible for electrical conduction in a
metal. It obeys the laws of classical mechanics. Here, the free electrons are assumed to
move in a constant potential.

2. Quantum free electron theory
Many of the difficulties encountered by the classical free electron model were removed
with the advent of quantum mechanics. In 1928, A. Sommerfeld modified the free
electron model in two important ways:
1. The electrons must be treated quantum mechanically. This will quantize the
energy spectrum of the electron gas.
2. The electrons must obey Pauli's exclusion principle; that is, no two electrons
can have the same set of quantum numbers.
3. Band theory of solids
This theory was proposed by Bloch in 1928. According to this theory free electrons
move in a periodic potential. It explains electrical conductivity based on the energy
bands.

1.5 Classical Free electron theory of metals

We know that an atom consists of a central nucleus with positively charged protons
surrounded by the electrons of negative charge. The electrons in the inner shells are called core
electrons and those in the outermost shell are called valence electrons. In a metal, when the
valence electrons of each atom detach from the orbit, then they move freely throughout the
metal. These electrons are known as free or conduction electrons
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Assumption:

I.  All the metals are composed of atoms. Each atom has central nucleus surrounded by
number of electrons in the permissible orbits

Il.  The electrons in the metal are free to move in all possible directions about the whole
volume of metal like molecules of a perfect gas in a container.

Absence of Electric field

I.  All the electrons are move in random direction and collide with each other elastically
without any loss of energy
Il.  The force between the conduction electron and ion core is neglected and the total energy
of the electron is assumed to be Kinetic energy (Potential energy is zero)

Presence of electric field

I.  The free electrons moves in a direction opposite to the direction of the applied field
(drifted towards positive potential)

Il.  Since free electrons are assumed to be a perfect gas, they obey classical kinetic theory
of gases and the free electron velocities in the metal obey Maxwell — Boltzmann
statistics.

Drift velocity (vq)
The average velocity acquired by the free electron due to the application of electric field in the

direction opposite to the direction of electric field. v, = —

[

Mean free path (1)

The average distance travelled by a free electron between any two successive collisions in the
presence of an applied field is known as mean free path A = Vy XT,

Collision time (tc)

The average time taken by a free electron between two successive collisions of the electrons is known

4 ] A
as collisiontime 7, =—
Vi

Relaxation time (1)

The average time taken by a free electron to reach its equilibrium position from the distributed position
due to application of an external electric field is called relaxation time. Generally the relaxation time is
of the order of 104 sec

Electrical conductivity

When an electric field (E) is applied between the extreme ends of a metallic rod, the electrons will move
in opposite direction to the direction of applied field with a drift velocity Vq. If ‘E’ is the electric field
applied on an electron of charge ‘e’, then

Lorentz Force acting on the electron, F = eE (8]

DR. R. RAJESH / A.P / PHY/VCET



This force accelerates the electrons and this accelerated electron collide with positive ion core and other
free electrons elastically. After collision the electros losses its kinetic energy and velocity. Due to the
driving force the electron will accelerated once again before its involve next collision.

Here, Acceleration (a) = Ve 2
T

here Vg — drift velocity; T — Relaxation Time

1o}

Ficld direction

From Newton Il law of motion, Force on the electron, F = mass (m) x acceleration () (€))
Sub. (1) in (3), we get F = 1V )
T
: mV, er
From equations (2) & (4) eE = (onV, =| — E 5)
T m
From ohm’s law, the current density (J) is expressed in terms of electrical conductivity (o) as
J=06E (6)
Also, the current density in terms of drift velocity can be writtenasJ=ne Vy @)
Sub. (5) in (7), we get J — ne(ei)E (o) ;_rere ®)
m m
By comparing (6) and (8)
2
Electrical conductivity |5 = "¢ © C))
m

Thus, the amount of electrical charges (Q) conducted per unit time (t) per unit area (A) of a solid along
unit applied electrical field (E).is called electrical conductivity

Thermal Conductivity

“It is defined as the amount of heat (Q) flowing per unit time through the material having unit area of
cross section and maintaining at unit temperature gradient (dT/dx)”
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Consider A=1m? & t=1sec,ie., Q = K a7 (on K. (10)
dx S dT

dx

T Heat( A (T-dT)
A

v

Consider two cross sections ‘A’ at high temperature (T) & ‘B’ at low temperature (T-dT) in a uniform
metallic rod ‘AB’. Two cross sections ‘A’ and ‘B’ are separated by a distance ‘A’. The conduction of
heat takes place from ‘A’ to ‘B’ through electrons. During collision, electrons near ‘A’ lose their kinetic
energy while electrons near ‘B’ gains the energy

Let the density of conduction electron be ‘n” and velocity of electron be “v’.

At ‘A’ average kinetic energy of the electron = §kT " KE= { 1 mv2 = 3 kT} (11)
2 2 2

Where k — Boltzmann Constant and T — absolute temperature

At ‘B’ average kinetic energy of the electron = 3 k(T —dT) (12)
2
" Excess Kinetic energy from A to B of an electron = 3 1 - §k(-|- _dT) = 31T (13)
2 2 2
Number of electrons crossing unit area per unit time from ‘A’ to ‘B’ = 1 nv (14)

Excess energy carried from ‘A ‘to ‘B ‘for unit area in unit time = 1 nv x 3 kdT = 1 nvkdT (15)
6

I1I"Y, Deficient energy carried from ‘B’ to” A’ for unit area in unit time = - = ykdT (16)

Net amount energy transferred from ‘A ‘to ‘B> Q= 1 nvkdT — (_1 nvkdT)
4 4

(or) Q= ;nvde (17)

But, by definition Q = K ar (or)
dx

~K=tovka (19
2
W.K.T for metals, relaxation time (T) = Collision time (k).

e, T=Tc= 4 (o) v =4 (19)
1%
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Sub. Egn. (19) in (18), we get .- K = ; nv’kz

This is the Expression for Thermal Conductivity

Wiedemann — Franz Law

- nv’kr
Dividing equation (20) by (9), we get, _ThermalConductivity _ K _
ElectricalConductivity o ne’r

m

K 1mvk
(or)y — ==
o 2 e’

W.K.T the kinetic energy of an electron is Emvz = ng

. K 3 kTxk 3(k’
Then, equation (21) becomes — = — X — = | =
o 2 e 2\ e

(or) =LT

L 4
o

2

Where L = —[—zj is a constant called Lorentz number. By substituting the value of
e

k=138 x102JK?, e =1.6 x 10°Coloumb, L =1.12 x 108 WQK™?2.

5ooT
o

(20)

(21)

Thus “The ratio of Thermal Conductivity to Electrical Conductivity of a metal is directly proportional

to absolute temperature of the metal”
Success of classical free electron theory

i. Itis used to verify Ohm’s law

ii. Itis used to explain electrical and thermal conductivities of metals
iii. Itis used to derive Wiedemann — Franz law
iv. Itisused to explain the optical properties of metal

Failure of classical free electron theory

i.  Classical theory states that all free electrons will absorb the supplied energy. But quantum

theory will absorb certain amount of supplied energy

ii.  Electrical conductivity of semiconductors and insulators could not be explained by this theory
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iii. ~ The phenomenon such as photo —electric effect, Compton effect and black body radiation could
not be explained by this theory

iv.  The theoretical and experimental values of electronic specific heat and specific heat are not
matched

v.  The ratio of thermal to electrical conductivity is not constant at all temperature

vi.  The experimental and theoretical values of Lorentz number are not matched.

1.6 Quantum free electron theory (QFE)

Many of the difficulties encountered by the classical free electron model were removed with
the advent of quantum mechanics. In 1928, A. Sommerfeld modified the free electron model
in two important ways:

I.  The electrons must be treated quantum mechanically. This will quantize the energy
spectrum of the electron gas.

Il.  The electrons must obey Pauli's exclusion principle; that is, no two electrons can have
the same set of quantum numbers.

As a result of these modifications, when we put an electron gas in a solid, we begin by putting
the electrons in the lowest energy states available, while obeying the exclusion principle, until
we have used all the available electrons. This is to be contrasted with the classical free electron
gas in which the electrons can assume continuous energy values, with many electrons having
the same energy. This has profound implications for the statistical distribution of energies (the
average number of electrons having a certain energy E) that the electrons can have. Thus,
whereas a classical gas will obey Maxwell-Boltzmann statistics, the quantum mechanical gas
will follow a new type of statistical distribution known as the Fermi-Dirac distribution. This in
turn will affect the way the electron gas can absorb energy from an external source, such as a
heat source, and the way it responds to an electric field. Aside from these two key
modifications, Sommerfeld kept most of the assumptions of the Drude model:

I.  The valence electrons are free to move through the solid.
Il.  Aside from collisions with the ions, the electrostatic interaction between the electrons
and the lattice ions is ignored.
1. The interaction between the electrons is also neglected.

Essentially, the valence electrons retain the main features of an ideal gas but a gas that must be
treated quantum mechanically rather than classically.

Merits

I.  This theory treats the electron quantum mechanically rather than classically.
Il. It explains the electrical conductivity, thermal conductivity, specific heat capacity of
metals, photoelectric effect, Compton effect, etc.,

Demerits

I. It fails to state the difference between conductor, semiconductor and insulator
Il. It fails to explain the positive value of Hall coefficient and some of the transport
properties of the metals.

1.7 Electrons in metals - particle in a three dimensional box.
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The Solution of one dimensional potential box can be extended for a three dimensional
potential box. Here the particle can move in any direction in space. Hence instead of one
quantum number ‘n’ three quantum numbers nx, Ny ,nzare considered corresponding to the three
coordinating axis (X,y,z).
If a,b,c, are the length of the box as shown in figure along x,y,z axis ,then the energy of the
particle En= Ex+ Ey+ E;

b
a "X
Cc
I's
z
Three dimensional potential box.
E _ n}h? | njh? nzh?
I.8., NxMyNz ™ 8ma2 = gmb2 8mc?

For a perfect cubic boxa=b=c

Energy Eigen value is E, o [nZ +n2 + nZ (1)

x,ny,nz 8m

The corresponding normalized wave function of an electron in a cubical box can be rewritten

as

_ |2 2 2 . o NgTx o . DyTy . ongmz
Ynonyn, = \/; X \ﬁ X \/; .sin=-=.sin == . sin = (2)
Degeneracy:

It is nothing but the quantum numbers having same Eigen value but different Eigen states. Such
states and energy levels are called Degenerate state
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Eg : if a state of quantum numbers are

ny=1;n,=2; n,=1,n,=1;n,=1; n, =2 &
ny=2;n,=1; n, =1have same Eigenvaluesas n; +n; +n; =6
6h?
Ei21 = Ey12 = Ezin = sma? 3)

But the corresponding Eigen functions are

Wi = |~ .sinZ sin22 . sin A
121 ad ’ a ’ a | a
8 . TX . Ty . 2MZ
= [ .sin— .sin— .sin— 4
Y112 23 a a a > 4)
8 . 2TX . Ty .. Tz
Y11 = | .sin— .sin— .sin—
a a a a j

Non - Degeneracy:

For various combinations of quantum numbers if we have same energy Eigen value and Eigen

function then each states and energy levels are called Non - Degenerate state

12h?

Eg: forn, =2;n,=2; n, =2 wehave EZZZ:W

l/) _ 8 Sil’lznx Sinthy Sin21'tz
222 7 (Ja3 a | a a

1.8 Fermi- Dirac statistics

It deals with the particles having half integral spin like electrons. They are known as Fermi
particles or fermions. Fermi distribution function gives the distribution of electrons among the
various energy levels as a function of temperature.

Definition
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‘The Probability F (E) of an electron occupying a given energy level at absolute temperature is called
Fermi - Dirac distribution function

1
i.e., F(E) =T (&g where E — energy of the level whose electron occupancy is being

l+e ¥
considered; Es — Fermi energy; k — Boltzmann constant; T — absolute temperature

The probability value of F(E) is always lies between 0 and 1.

If F(E) =1, the energy level is occupied by an electron.

If F(E) = 0, the energy level is vacant and it is not occupied by an electron

If F(E) = 0.5, There is a 50% chance for the electron occupying in that energy level.
Effect of temperature on Fermi function

The dependence of Fermi distribution function on temperature and its effect on the occupancy of energy
level is shown in fig. (5) and (6)

1 1 1
Casel:at T=0Kfor E <Ex, F(E) — (Some-VeVvalue) - 1 —x :1:1
l+e 0 e

.". F(E) = 1Thus, there is a 100% chance of electron occupy below the Fermi energy of the energy level

1 1 1 1
Case2:atT=0KforE>E;, F(E) = (Somarvevaiue) = =—=0

1+e o l+e“ l1l+a «

.. F(E) =0 Thus, there is a no chance of electron occupy above the Fermi energy of the energy level

4
4
T
T 1 K
T 1 F(E)
FE) st T Kelvin
0.5
as +— 0K
0 &
¢ > Energy ——’Ec Betky o
B —
Energy i
Fig(b) Fig(6)
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1+e° 141 2

There is a 50% chance for the electron to occupy Fermi energy level

Case 3: At any temperature other than OK and E= E¢, F(E) =

With increase in Temperature, i.e., T>0K, Fermi function F (E) varies with ‘E’ as shown in figure (5)

At very high temperature when (thermal energy) KT >>E;¢ (or) T — a, electron lose their quantum
mechanical behavior and the Fermi distribution function reduces to classical Boltzmann distribution.

Uses:
0] It gives the probability of the electron occupation at the given energy state at given
temperature
(i) It is used to calculate the number of free electrons per unit volume at given temperature

(iii) It is used to calculate the Fermi energy of the metal.

Fermi energy level

It is the energy level at any finite temperature above zero Kelvin at which the probability of electron
occupation is ¥z (or) 50%

It is also the energy level of maximum energy of the filled states at zero Kelvin.

1.8. Density of states

n;
Nz
N\
- Fermi Surface
F Kk, %
o -

Nx

It is defined as the number of available electron states per unit volume in an energy interval E and E+dE.
It is denoted by Z(E)

Number of available energy states between E & E + dE in a metal piece (N(E) dE)
Volume of the metal piece (a?)

Z(E) =
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Let us consider a cubical metal piece of side ‘a’. The electron will behave as a wave in this metal and

confined with the allowed energy levels.

h2
ma?

The energy of the electron in three dimensional potential well is E = — (nZ +n% +n2) (1)
where the energy of an electron is determined by sum of the square of quantum numbers (nx, ny, n; ).
For this, A imaginary sphere is constructed with quantum numbers ny, ny, n; as three coordinate axes in
a three dimensional space. A radius vector ‘n’ is drawn from the origin ‘O’ to a point ny, Ny, Nz It is
observe that, all the points lie on the surface of this sphere will have same energy ‘E’.

Thus, n? = n®>+ ny*+ n2denotes the radius of the sphere with energy ‘E’. This sphere is further divided
into many shells. Each shell represents a particular combination of quantum numbers and therefore
represents particular energy value

Let us consider two such energy values E and E+dE. The number of available energy states between E

and E+dE can be determined by finding the number of energy states between the shells of radius n and

n+dn.
Number of energy states within a sphere of radius ‘n’ = 4 me (1)
3
Since the quantum number ny,nyn, have only +ve integer value, we have to take only one octant of
sphere [1)
8
.". No. of available energy states within one octant of sphere of radius ‘n’ - 1 % {4 ﬂns} 2
Corresponding to energy ‘E’
I1I"Y No. of available energy states within one octant of sphere of — 1 % {4 z(n+ dn)ﬂ 3)

radius ‘n+dn’ corresponding to energy ‘E+dE’

No. of available energy states between the shell of radius ‘n” & ‘ntdn’

:;x|:|::7z(n+dn)3}—:7m3:|

:%x%([n+dn]3—n3)
N(E)_l 472—( 3 3 2 2 3
_gx? n° +dn® + 3n“dn + 3ndn —n)

Neglecting higher power of dn which is very small, N (E) dE _ 1 % {4 3n2dn} (or)
8 |3

DR. R. RAJESH / A.P / PHY/VCET



N(E)dE::{Z}fdn} (on) N(E)dEzz[Z}(ndnﬂ @

We know that, the particle in a one dimensional box of radius ‘a’ in Schrédinger’s wave equation is

2102
g- 1" (5)
8ma
2
(on) pz =S E ©)
h2
1
2 2
won:[8ma5} ™)
h2
. - 8ma’
Differentiating egn (6) w.r.tn & E, we get 2ndn = o dE (8)
2
(OOndn:ST? dE ©)
Sub the value of Eqn(4) & Eqgn (7) in Eqn. (9) , we get
1
N (E) dE = 7 8ma’E 2 8ma’ dE
2 h? 2h?
. PR
NN (@) dE=", L, |8Mma | Fige
2 2 h
Pauli’s exclusion principle states that’ two electrons of opposite spins can occupy each state’
2 E 2 E
2 1 2 1
SN(E)dE=2x "« 8ma xE2dE = Zx 2x2°m xa’x E2dE
4 | h? 2 h®
4r 3 :
“NAB)E = - (2m)z xa* xE2dE (10)
Density of states is number of energy states per unit volume
4 3 =
—~x(2m)2 xa® x E2dE
~.z@E) de= N(E)E _p (2m)e xa’
V a®
.zzwwm=ifx@mﬁxeme (11)

This is the density of charge carriers in the energy interval ‘E’ & ‘E+dE’. It is used to calculate carrier

concentration in metals and semiconductors.

Carrier Concentration
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Normally all the energy states are not filled. Hence the probability of filling the electron is done by
Fermi distribution function (E). The number of electrons per unit volume (or) density of electrons is

called carrier concentration

Carrier concentration of electrons in energy bands n_ = J.Z (E).F(E)dE

(or) nc = %x(zm)g x J'E%dE.F(E) (12)

energyband
1
(2m)§ x [ E? *(1E_—E'7dE (13)

energyband l+e X

(or) nc = %r 8
Nn¢ is known as carrier distribution function

Fermi energy at 0 Kelvin
We know that 0 K maximum energy levels that can occupied by the electron is called Fermi energy

level (Efo)
(i.e.,) at 0 K for E<Efand therefore F (E) = 1

.". Integrating equation 12 within the limits 0 to Efo , then the carrier concentration is

Efo Ef
n, = 4—7Z><(2m)2><E 2dE. = 4—7[>< 2m 2>< j EZdE
s h? h®
(00 n, =27 (2mE, )2 (14)
3h °
, 2
h 3n. )3
o) E, =| — [x ¢ 15
0 Es (ZmJ [&:] (19

This is the Fermi energy of electrons in solids at absolute zero. Thus, Fermi energy of a metal depends
only on the density of electrons of that metal.

When the temperature increases .Fermi level (or) Fermi energy slightly decreases

It can be shown that E, = =E, 1-" KT
12 E

Importance:
e It is the level which separates the filled valence energy level and vacant conduction energy
levels

e It determines the energy of the particle at any temperature

Average energy of electron s at 0K
Total energy of electrons at OK (Er)
Average energy of electron (Eav) = (16)

Number of Energy States at 0K (n¢)
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Here, Total Energy of electrons at 0K = Number of Energy states at 0K x Energy of the electron

E¢,

E, = [Z(E)JE.E

. 4r 3
S E, =—x(2m): jEZEdE
h?

5
2

E
(OI’) E; = ::ﬂ ><(2m)2 x E
2
3 5
O €, = % (am) <}

Substituting Egn (13) & (15) in (14), we get

8 3 >
3 x(2m)2 = E,E 3 5 3
E oh ~2E2 —E?
Avg 872'( )3 3 5 F oF
2m)z x E2
3h? F

. The average energy of electron at OK is E

1.9. Electron in periodic potential
Band theory of solid (Zone theory)

Avg -

(17

The free electron theory explains the properties like thermal conductivity, electrical

conductivity and specific heat of most of the metals. But it fails to explain why some solids are

conductors, some are insulators and others are semiconductors. A solution to this problem was

given by band theory of solids and is called zone theory. According to this theory, the potential

energy of the electron inside the crystal through which an electron move is supposed to be

constant (zero). So it is completely free to move about in the crystal, restrained only by the

surface of the crystal.

3!
band
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Postulates:
I.  According to band theory, potential energy of electron within the crystal is periodic due
to periodicity of the crystal. i.e., free electron move inside periodic lattice field.
Il.  The potential energy of the solid varies periodically with the periodicity of space lattice
‘a’ which is nothing but the interatomic spacing.
Inside a real crystal, the electrons (-) move through periodic arrangement of positively charged
holes (+). Let us imagine one dimensional periodic potential distribution for a crystal (Fig).
Here the potential energy of the electron at the positive ion site is zero and is maximum when

it is half way between the adjacent nucleui.

Brillouin zones are the boundaries that are marked by the values of propagation vector k in
which the electrons can have allowed energy values without diffraction. since k is a vector, it
has different values along different directions.

Explanation:

The relationship between the wave vector and the energy of the electron in constant potential
field can be got as follows.

We know, in a length of potential box ‘/’the energy of the electron in a constant potential
field.

n*h?
== 8ma’ @)
2_2
Also, we know that wave vector k = nf (or) a® = nkf 2
k’h?
Substituting equation (2) in (1) we get E = P (3)

a plot is made between the total energy ‘E’ and the wave vector k, for different values of k
with n = £/, k = tn/a. n ==£2, k = £2n/a, etc., For the above values of k, the curve is
obtained as shown in figure. which is in the form of a parabola with discontinuities.

From the figure it can be seen that the energy of the electron increases continuously from 0 to
+7/a then the electron meets the wall and is reflected. This range of allowed energy values in
te region between - z/a to n/a is called first Brillouin zone. The second allowed energy values
consists of two parts: one from z/a to 2z/a and another from - z/a to -2 #/a is called second
Brillouin zone and so on.

Therefore we can conclude that the electron can go from one Brillouin zone to the other only
if it is supplied with an energy equal to forbidden gap energy. This forbidden gap is the one
which decides whether the solid is an insulator, semiconductor (or) conductor.
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Brillouin zone can be constructed by drawing vectors from the origin to the nearest lattice
point and then draw Bragg planes perpendicularly between these two points. The region

below this plane are said to Brillouin zone.
\ b /

Third Brillouin Zone (-3 7 /a to - 2n/a & 3 w /a to 2n/a) —9

%7 N

First Brillouin Zone (-7 /a to n/a)

Second Brillouin Zone (-2 7 /a to - n/a & 2 7 /a t0 7/a)

1.10 Energy bands in solids

(i) Free and bound electrons

In an isolated atom all the electrons are tightly bounded with the central positive nucleus and
revolves around various orbits. The number of electrons the outermost orbit are called valence
electrons. In the outermost orbits, the attractive force between the nucleus and electrons will
be very less, so that the electrons can be easily detached from the nucleus. These detached

electrons from the outermost orbits are called free electrons. But as far as the innermost orbits
are concerned, the electrons are tightly bounded with positive nucleus, and hence they are
termed as bound electrons.

Valence electrons
Nucleus —m8 L[ [ ¢

Q@ ®
Bounded electrons <\O_o o

(i)  Energy levels

We know that each orbit of an atom has fixed amount of energy associated with it. The
electrons moving in a particular orbit possess the energy of that orbit. The larger the orbit, the
greater is its energy. So, the outermost orbit electrons possess more energy than the inner
orbit electrons. A convenient way of representing the energy of different orbits are called
energy levels as shown in figure. Let E;1 be the energy level of K shell, E> be the energy level
of L shell, Ez be the energy level of M shell and so on. The larger the orbit of an electron, the
greater is its energy and higher is the energy level.

ra r3 M ( 111 Energy level)
r Radii L (Il Energy level)

r L ry K (I Energy level)

K Edge of nucleus
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From the figure it is clear that the electrons can revolve only in certain permitted orbits of radii
r1, r> and rz etc., and not in any arbitrary orbit. Since the electrons are not allowed in between
the radii ry and r2 or between the radii r> and r3 etc., there won’t be any electronic energy levels
in between those radii so called forbidden radii. These unallowed energy levels are called
forbidden energy levels.

(iii)  Energy bands

It has to be noted that as long as the atoms are widely separated, they have identical energy
levels. But, once the atoms are brought together the interatomic force of attraction between the
atoms in the solid may modify the energy levels of a solid as energy bands. Now let us discuss
how energy levels of single free atom becomes bands in solids.

Let us consider two identical atoms of diameter (d) separated at a distance (r), so that the
electronic energy levels of one atom [Ei}(K — shell) and E2}(L — shell)] do not affect the
electronic energy levels of the other atom [E1?(K — shell) and E2?(L — shell)] as shown in figure

L —shell E?
L — shell = L — shell E.? L —shell Eo!
K — shell E:! K —shell E:? K — shell E:?
Q K — shell Ei!
Atom1 @ Atom 2 d,
r>>d r=

Now when the atoms are bring closer to each other, some force of attraction occurs between
them and according to quantum mechanics, their wave functions will start overlapping.
Therefore when two atoms are brought closer, it does not remains as two independent atoms,
rather it forms a single two — atom system with two different energy levels to form energy
band as shown in figure.

Origin of energy band formation in solids

We know that when two atoms of equal energy levels are brought closer to eachother, the
original energy levels viz E; and E> splits each into two energy levels. i.e., the K- shell energy
E: splits in to E1* and Ez*. Similarly the L — shell energy Ez splits in to E1? and E2* Now when
three atoms are brought closer together, the original energy levels viz E; and E; splits each into
three energy levels viz Ei* Ei? and Ei®and E' E? and Ez’respectively. These type of
transformations from the original energy levels into two (or) more energy levels is known as
Energy level splitting

Energy bands
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Therefore, if ‘N’ number of atoms of equal energy levels are brought closer to from a solid,
then it forms a closely spaced continuous energy levels, so called energy bands.

Hence an energy band can be defined as, the range of energies possessed by an electron in a
solid. The magnified view of the energy band which consists of a large number of very closely
spaced energy levels as shown in figure.

Inner Filled Bands, Valence band and Conduction band

During the formation of energy bands, the inner filled energy levels forms a energy band called
Inner filled bands. Similarly the electrons in the outermost shells of atoms forms an energy
band called valence band. The valence band will be of completely filled (or) partially filled
with electrons, based on the type of materials.

If an electron comes out from valence band for conduction, then they form an energy level
corresponding to the energy band called conduction band

Forbidden gap
While referring to energy bands, they are separated by small regions which does not allow any
energy levels. Such regions between the energy bands are called forbidden gaps (or) forbidden
energy gap Eg as shown in figure.

A
4
oy L —shell $ E23 Conduction Band
2 2
E2 L-—shell E2®
E,l E,!
Bandgap ? Forbidden band gap
) g4 W | Fully (or) partially filled
3 I chall H 3 Valence Band
E: K—=-shell K — shell E:
E;2 E;2
E.! Eil
CX) m Inner Filled Bands

Based on band theory and the presence of forbidden band gap the materials are classified in
to three categories viz:

(i) Metals (or) Conductors

Here, there is no forbidden band gap. Hence the valence band and conduction band overlap
with each other. Since the free electron are relatively available in large number, even a
small external field induces the electrons from the valence band to conduction band and
hence conduction easily occurs.

Example: Copper, Aluminium, etc.

(i) Semiconductors
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Here, the forbidden band gap is small (say 0.5 to 1.5 eV) and hence the width of forbidden
gap is smaller than allowed energy bands. Generally, the free electrons in valence band is
comparatively less compared to conductors because of finite forbidden gap and hence the
semiconductor requires external field with energy greater than or equal to this forbidden
gap energy such that conduction process occurs.

Example: Germanium, Silicon, etc.
(iii) Insulators

Here the width of the forbidden gap is wider (say 3 to 5.47 eV) and hence the width of
forbidden gap is larger than allowed energy bands. Therefore in case of insulator, a
sufficiently large energy is required for conduction to occur.

Example: Diamond, Dielectrics, etc,

1.11 Free electron approximation

We know in solids there exists the ionic cores which are tightly bounded to the lattice location,
while the electrons are free to move here and there throughout the solid. This is called free
electron approximation.

In free electron approximation the following points are observed:
(i) The potential energy of the electron is assumed to be lesser than its total energy.

(i) The width of the forbidden bands (Eg) are smaller than the allowed bands as shown in the
figure

(iii) Therefore, the interaction between the neighbouring atoms will be very strong.

(iv) As the atoms are closer to each other, the inter atomic distance decreases and hence the
wave functions overlap with each other as shown in figure

1.12 Tight binding approximation

Tight binding approximation is exactly an opposite approach of discussing the atomic
arrangements, when compared to free electron approximation.

Here instead of beginning with solid core, we begin with the electrons, i.e., All the electrons
are bounded to the atoms. In other way we say that the atoms are free, while the electrons are
tightly bounded. Hence, this is called tight binding approximation

The following points are observed in tight binding approximation:
(i) The potential energy of the electron is assumed to be almost equal to its total energy.

(if) The width of the forbidden bands (Eg) are larger than the allowed bands as shown in the
figure

(iii) Therefore, the interaction between the neighbouring atoms will be weak.
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(iv) As the atoms are not closer, the inter atomic distance increases and hence the wave
functions will not overlap with each other as shown in figure

Explanation

Let us consider the atoms with larger inter atomic distance (a2) as shown in figure. Here the
atoms are far apart, and all the bounded electrons have fixed energy levels. Therefore when a
solid is formed by using the same element, then the energy levels occupied by the electrons in
each atom will be identical, which lead to tight binding approximation.

Now, when we bring the atoms closer to each other to form the solid, then inter atomic
distance (a1) decreases. Therefore, the outer shell electrons begin to overlap and the energy
levels also splits as shown in figure.

If the inter atomic distance is further reduced, then the splitting of energy level happens for
the inner shall electrons also, which lead to free electron approximation.

Energy

Free electro Tight bind

' I~y
allowed energy barids =_—

|, Forbidden band gap

a1 az

a1 ar Inter atomic distance

1.13 Effective Mass and Concept of Hole

Effective mass of an electron is the mass of the electron when it is accelerated in a periodic
potential and is denoted by m”

When an electron of mass m is placed in a periodic potential and if it is accelerated with the
help of an electric or magnetic field, then the mass of the electron is not constant, rather it
varies with respect to the field applied. That varying mass is called as effective mass (m”)

To study the effect of electric field on the motion of an electron in one dimensional periodic
potential, let us consider the Brillouin zone which contains only one electron of charge e in
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the state k , placed in an external field ‘E’. Due to the field applied the electrons gains a group
velocity quantum mechanically and therefore the acceleration changes.

The group velocity with which the electron can travel is V, = ((jj_i) (D)
: 27E
Where k — wave vector; ®— angular velocity of electron w=27zv (0r) w =——
()
Substituting equation (2) in equation (1) we get
ngz—ﬂxd—E (or)nglxd—E (3)
Group velocity h dk hodk
If the electron moving in a crystal lattice with momentum P, then the wavelength associated
is ﬂzﬂ (or) pzz—”xl(or) P =7k 4)
p A 2z
Differentiating equation (4) w.r.ttot Z—T = h% (5)
dk F dk
or F=h— —=— 6
(o) (o = ©®)
: dv, d[1 dE
we know acceleration a=—=—| =x—
dt —dt| 2z dk
1d’*E dk
== = 7
hdk? dt ")
Substituting equation (6) in equation (7), we get
1d°E_F 1 d’E n?
a, =— — (or) a, =— F (or) F=————a 8
Shae n O ATt O P g ®)
Equation (8) resembles with newton’s force equation
ie,F=eE=m"a ©)
Where m” is the effective mass of the electron.
. h*
Comparing equation (7) and (8), we can write m = TETdC (20)

Equation (10) represents the effective mass of an electron in a periodic potential, which
2

depend on %

Special cases:
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d E
(i) If — is +ve, then effective mass m”is also positive

— is -ve, then effective mass m”is also negative

@) If —- d E is zero, then effective mass m” becomes infinity

Negative effective mass (or) concept of hole

To show that the effective mass has negative value. Let us take the Energy - wave vector (E-k)
of a single electron in a periodic potential. i.e., consider the 1% Brillouin zone (allowed energy
band) alone as shown in figure.

In the E —k curve, the band can be divided in to two bands viz. upper band and lower band with
respect to a point (P) called a Point of inflection.

2
(i) In the lower band the value of ?jkE is a decreasing function from the point of inflection

2

—is +ve and hence m” should be +ve in the lower band. If a plot is made between

2
m“and k for different values of ?jkE we get the curve as shown in figure

2

(it) In the Upper band of E - k the value of R

k2

is a increasing function from the point of

inflection

2

—is -ve and hence m” should be -ve in the upper band. If a plot is made between m”"and

2
k for different values of ((jjkE we get the curve as shown in figure

2

(iii) At the point of inflection, the value of Zkf

=0 and hence in m” - k plot, effective mass
goes to infinity.

The electron with the negative effective mass is called Hole, in other words the electron in
the upper band which behaves as a positively charged particle is called hole. It has the same
mass as that of an electron but with positive charge.

Therefore, the advantage of the concept of hole is, for a nearly filled band with n number of
empty states as shown in figure n number of holes arises

In other words, we can say that the presence of hole is attributed to an empty state, for an
electron to be filled. Thus, based on the hole concept several phenomena like Thompson
effect, Hall effect, etc., are well explained.
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