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1.1. Introduction 

It is essential to study the various electrical properties of solids for their specific applications. 

In terms of electrical properties, all solid state materials are classified as conductors, 

semiconductors and insulators. The selection of different applications depends on their 

electrical properties and the nature of the requirement (materials).Electrical phenomena caused 

by the motion of electrons in solids and find many applications in house holding and industrial 

applications. For example, electrons in metallic filament and the property of electrical 

resistivity of the material are used in incandescent lamps for heating. Similarly the mobility of 

electrons is being exploited in solar cells, lasers, in control of thermonuclear reactions, etc. 

This chapter going to reveal the electrical conduction, thermal conduction, density of states, 

number of electrons per unit volume in a metal, etc. Besides, it also deals with classical free 

electron theory, quantum free electron theory, Energy bands in solids, tight binding 

approximation, electron effective mass and concept of the hole. 

 

1.2 Arrival of Ohm’s law in microscopic point of view. 

If a battery is connected in series with an ammeter and a piece of some material (copper, 

Aluminium or such), a deflection in the ammeter will indicate a flow of charged particles (a 

current i) through the circuit (see Fig.1). Simultaneously there will be a voltage drop V across 

the sample as measured by a voltmeter. If the voltage of the battery is varied, i will vary 

proportionally with V. It can therefore be stated that if a voltage V is applied across a sample, 

a current proportional to it will flow: 

V iR             (1) 

where R is the proportionality constant and is called the resistance of the sample. Equation 1 is 

known as Ohm's law.   

 

             

           a                       b  

                        l 

 

         i   

Ohm's law can be restated in a microscopic form to understand the phenomenon of conduction 

by concentrating attention on the sample. The fact that there is a potential difference V across 

the sample means that there is an electric field E in the sample. If the sample is uniform in 

geometry and quality, E will be constant, and it follows that   

1.   Electrical Properties of Materials 



 

DR. R. RAJESH / A.P / PHY/VCET 2 

 

b

ab

a

V V Edl El                                                                                                                       (2) 

Where l is the length of the specimen.  

Given a certain potential difference (and therefore a certain E), the larger the cross-sectional 

area A of the sample, the larger the current will be. (Think of the analogy of a pipe with flowing 

water.) We can eliminate the geometric parameter A by introducing a new quantity, the current 

density J, defined as the current per unit cross-sectional area.  

( )
i

J or i JA
A

                               (3) 

Let us recollect the macroscopic Ohm’s law (V =iR) and substitute the value of i as well as the 

value of V from equations (2) and (3), finally we get an equation as  

( )
RA

El JAR or E J
l

                 

where the quantity  = RA/l is called the electrical resistivity and has dimensions of ohm-

meters (Ω-m). Ohm's law can be expressed another way by introducing the term electrical 

conductivity, (σ = 1/), which has dimensions of reciprocal ohm-meters (Ω-m) - l.                                                                         

(or) 1( ) [ ]
J

E J or E  


    

J E             (4) 

 

1.3 Relationship between current density (J), drift velocity (vd) and mobility (). 

Let n be the number of charge carriers per unit volume in a conductor of length l with uniform 

cross sectional area A. The current flow through the conductor is given by 

arg ( )

( )

Totalch e q
i

Time t
                                       (5) 

Here the total charge depends on the number of electrons per unit volume (n), charge of one 

electron (e), Area of cross section (A) and length of the conductor (l). Hence equation (5) 

becomes 

d

nAel
i nAev

t
             (6) 

Here vd = l/t is called the drift velocity. It arises due to the movement of charges in the opposite 

direction of the electric field 

We know that 
i

J
A

   & Hence we can write ( )d
d

nAev
J or J nev

A
                                          (7) 

From equation (4), we get dE nev                                                                                       (8) 
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(or) ( )dv
ne or ne

E
                                                                                                       (9) 

Where  = vd / E is called the mobility of the charge carrier. It is defined as the drift velocity 

per unit electric field. Its unit is m2V-1S-1. 

 

1.4. Free electron theory of solids 

It is well known that the electrons in the outermost orbit of the atom determine the electrical 

properties of a solid. The free electron theory of solids explains the structure and properties of 

solids through their electronic structure. This theory is applicable to all solids, both metals and 

non-metals. It explains: 

1. The behaviour of conductors, semiconductors and insulators. 

2. The electrical, thermal and magnetic properties of solids. 

 

1.4.1 Versions of free electron theory 

1. Classical free electron theory 

The first successful attempt to understand the electrical properties of metals was 

presented by P. Drude in 1900 and was extended by H. A. Lorentz in 1909. According 

to this theory the free electrons are mainly responsible for electrical conduction in a 

metal. It obeys the laws of classical mechanics. Here, the free electrons are assumed to 

move in a constant potential. 

 

2. Quantum free electron theory 

Many of the difficulties encountered by the classical free electron model were removed 

with the advent of quantum mechanics. In 1928, A. Sommerfeld modified the free 

electron model in two important ways: 

1. The electrons must be treated quantum mechanically. This will quantize the 

energy spectrum of the electron gas. 

2. The electrons must obey Pauli's exclusion principle; that is, no two electrons 

can have the same set of quantum numbers. 

3. Band theory of solids 

This theory was proposed by Bloch in 1928. According to this theory free electrons 

move in a periodic potential. It explains electrical conductivity based on the energy 

bands. 

 

1.5 Classical Free electron theory of metals 

 We know that an atom consists of a central nucleus with positively charged protons 

surrounded by the electrons of negative charge. The electrons in the inner shells are called core 

electrons and those in the outermost shell are called valence electrons. In a metal, when the 

valence electrons of each atom detach from the orbit, then they move freely throughout the 

metal. These electrons are known as free or conduction electrons 
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Assumption: 

I. All the metals are composed of atoms. Each atom has central nucleus surrounded by 

number of electrons in the permissible orbits 

II. The electrons in the metal are free to move in all possible directions about the whole 

volume of metal like molecules of a perfect gas in a container. 

Absence of Electric field 

I. All the electrons are move in random direction and collide with each other elastically 

without any loss of energy 

II. The force between the conduction electron and ion core is neglected and the total energy 

of the electron is assumed to be Kinetic energy (Potential energy is zero) 

Presence of electric field 

I. The free electrons moves in a direction opposite to the direction of the applied field 

(drifted towards positive potential)  

II. Since free electrons are assumed to be a perfect gas, they obey classical kinetic theory 

of gases and the free electron velocities in the metal obey Maxwell – Boltzmann 

statistics. 

Drift velocity (vd) 

The average velocity acquired by the free electron due to the application of electric field in the 

direction opposite to the direction of electric field. 
d

c





  

Mean free path () 

The average distance travelled by a free electron between any two successive collisions in the 

presence of an applied field is known as mean free path     
cd
   

Collision time (c) 

The average time taken by a free electron between two successive collisions of the electrons is known 

as collision time   
c

d





  

Relaxation time () 

The average time taken by a free electron to reach its equilibrium position from the distributed position 

due to application of an external electric field is called relaxation time. Generally the relaxation time is 

of the order of 10-14 sec 

 

Electrical conductivity 

When an electric field (E) is applied between the extreme ends of a metallic rod, the electrons will move 

in opposite direction to the direction of applied field with a drift velocity Vd.. If ‘E’ is the electric field 

applied on an electron of charge ‘e’, then 

Lorentz Force acting on the electron, F = eE        (1) 
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This force accelerates the electrons and this accelerated electron collide with positive ion core and other 

free electrons elastically. After collision the electros losses its kinetic energy and velocity. Due to the 

driving force the electron will accelerated once again before its involve next collision. 

Here, Acceleration (a) = 


d
V

          (2) 

here Vd – drift velocity; Ʈ – Relaxation Time 

 

 

 

From Newton II law of motion, Force on the electron, F = mass (m) x acceleration (a)  (3) 

Sub. (1) in (3), we get 


d
mV

F          (4) 

From equations (2) & (4) 


d
mV

eE   (or) E
m

e
V

d 










     (5) 

From ohm’s law, the current density (J) is expressed in terms of electrical conductivity (σ) as 

J = σ E                         (6) 

Also, the current density in terms of drift velocity can be written as J = n e Vd   (7) 

Sub. (5) in (7), we get  E
m

e
neJ 










  (or)   
2ne

J E
m


       (8) 

By comparing (6) and (8) 

Electrical conductivity 
m

ne 


2

         (9) 

Thus, the amount of electrical charges (Q) conducted per unit time (t) per unit area (A) of a solid along 

unit applied electrical field (E).is called electrical conductivity 

 

 

Thermal Conductivity 

“It is defined as the amount of heat (Q) flowing per unit time through the material having unit area of 

cross section and maintaining at unit temperature gradient (dT/dx)” 

tAE

q
  
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Consider A = 1m2 & t = 1 sec,i.e., 
dx

dT
KQ   (or)    

dx

dT

Q
K 

                                                 (10) 

                                                                        T   λ (T-dT) 

                                                                                                                                           B 

 

Consider two cross sections ‘A’ at high temperature (T) & ‘B’ at low temperature (T-dT) in a uniform 

metallic rod ‘AB’. Two cross sections ‘A’ and ‘B’ are separated by a distance ‘λ’. The conduction of 

heat takes place from ‘A’ to ‘B’ through electrons. During collision, electrons near ‘A’ lose their kinetic 

energy while electrons near ‘B’ gains the energy 

Let the density of conduction electron be ‘n’ and velocity of electron be ‘v’. 

At ‘A’ average kinetic energy of the electron = kT
2

3  








 kTmvEK

2

3

2

1
. 2                   (11) 

Where k – Boltzmann Constant and T – absolute temperature 

At ‘B’ average kinetic energy of the electron =  dTTk 
2

3            (12) 

Excess Kinetic energy from A to B of an electron = kT
2

3   -   dTTk 
2

3   =  kdT
2

3                  (13) 

Number of electrons crossing unit area per unit time from ‘A’ to ‘B’ = nv
6

1          (14) 

Excess energy carried from ‘A ‘to ‘B ‘for unit area in unit time = nv
6

1  x kdT
2

3  = nvkdT
4

1        (15) 

IIIrly, Deficient energy carried from ‘B’ to’ A’ for unit area in unit time = - nvkdT
4

1         (16) 

Net amount energy transferred from ‘A ‘to ‘B’    )
4

1
(

4

1
nvkdTnvkdTQ   

(or)   nvkdTQ
2

1
                      (17)             

But, by definition 
dx

dT
KQ   (or) 

nvkK
2

1
                                    (18) 

W.K.T for metals, relaxation time (Ʈ) = Collision time (Ʈc). 

i.e., Ʈ = Ʈc = 


  (or)                 (19) 

Heat 

      A 
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Sub. Eqn. (19) in (18), we get  knvK 2

2

1
             (20) 

This is the Expression for Thermal Conductivity 

 

Wiedemann – Franz Law 

Dividing equation (20) by (9), we get,  

m

ne

kn
K

tyConductiviElectrical

ductivityThermalCon






2

2

2

1

  

             (or) 
2

2

2

1

e

kmvK



     (21) 

W.K.T the kinetic energy of an electron is kTmv
2

3

2

1 2    

Then, equation (21) becomes 
22

3

e

kkTK 



 = T

e

k








2

2

2

3
 

    (or) LT
K



 

Where L = 







2

2

2

3

e

k
 is a constant called Lorentz number. By substituting the value of   

k = 1.38 x 10-23JK-1, e = 1.6 x 10-19Coloumb, L = 1.12 x 10-8 WΩK-2.  

T
K



 

Thus “The ratio of Thermal Conductivity to Electrical Conductivity of a metal is directly proportional 

to absolute temperature of the metal” 

Success of classical free electron theory 

i. It is used to verify Ohm’s law 

ii. It is used to explain electrical and thermal conductivities of metals 

iii. It is used to derive Wiedemann – Franz law 

iv. It is used to explain the optical properties of metal 

 

Failure of classical free electron theory 

i. Classical theory states that all free electrons will absorb the supplied energy. But quantum 

theory will absorb certain amount of supplied energy 

ii. Electrical conductivity of semiconductors and insulators could not be explained by this theory 
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iii. The phenomenon such as photo – electric effect, Compton effect and black body radiation could 

not be explained by this theory 

iv. The theoretical and experimental values of electronic specific heat  and specific heat are not 

matched 

v. The ratio of thermal to electrical conductivity is not constant at all temperature 

vi. The experimental and theoretical values of Lorentz number are not matched. 

1.6 Quantum free electron theory (QFE) 

Many of the difficulties encountered by the classical free electron model were removed with 

the advent of quantum mechanics. In 1928, A. Sommerfeld modified the free electron model 

in two important ways: 

I. The electrons must be treated quantum mechanically. This will quantize the energy 

spectrum of the electron gas. 

II. The electrons must obey Pauli's exclusion principle; that is, no two electrons can have 

the same set of quantum numbers. 

As a result of these modifications, when we put an electron gas in a solid, we begin by putting 

the electrons in the lowest energy states available, while obeying the exclusion principle, until 

we have used all the available electrons. This is to be contrasted with the classical free electron 

gas in which the electrons can assume continuous energy values, with many electrons having 

the same energy. This has profound implications for the statistical distribution of energies (the 

average number of electrons having a certain energy E) that the electrons can have. Thus, 

whereas a classical gas will obey Maxwell-Boltzmann statistics, the quantum mechanical gas 

will follow a new type of statistical distribution known as the Fermi-Dirac distribution. This in 

turn will affect the way the electron gas can absorb energy from an external source, such as a 

heat source, and the way it responds to an electric field. Aside from these two key 

modifications, Sommerfeld kept most of the assumptions of the Drude model: 

I. The valence electrons are free to move through the solid. 

II. Aside from collisions with the ions, the electrostatic interaction between the electrons 

and the lattice ions is ignored. 

III. The interaction between the electrons is also neglected.  

Essentially, the valence electrons retain the main features of an ideal gas but a gas that must be 

treated quantum mechanically rather than classically. 

Merits 

I. This theory treats the electron quantum mechanically rather than classically. 

II. It explains the electrical conductivity, thermal conductivity, specific heat capacity of 

metals, photoelectric effect, Compton effect, etc., 

Demerits 

I. It fails to state the difference between conductor, semiconductor and insulator 

II. It fails to explain the positive value of Hall coefficient and some of the transport 

properties of the metals. 

1.7 Electrons in metals - particle in a three dimensional box. 
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The Solution of one dimensional potential box can be extended for a three dimensional 

potential box. Here the particle can move in any direction in space. Hence instead of one 

quantum number ‘n’ three quantum numbers nx, ny ,nz are considered corresponding to the three 

coordinating axis (x,y,z).  

If a,b,c, are the length of the box as  shown in figure along x,y,z axis ,then the energy of the 

particle En = Ex + Ey + Ez 

 

 

             y  

 

 

        

    b      

        

 

a      x 

     c  

  

       z    

                   Three dimensional potential box. 

 

i.e., 𝐸𝑛𝑥,𝑛𝑦,𝑛𝑧
=

𝑛𝑥
2ℎ2

8𝑚𝑎2 +
𝑛𝑦

2 ℎ2

8𝑚𝑏2 +  
𝑛𝑧

2ℎ2

8𝑚𝑐2 

 

For a perfect cubic box a = b = c 

 

Energy Eigen value is  𝐸𝑛𝑥,𝑛𝑦,𝑛𝑧
=  

ℎ2

8𝑚
[𝑛𝑥

2 + 𝑛𝑦
2 + 𝑛𝑧

2]                        (1) 

 

The corresponding normalized wave function of an electron in a cubical box can be rewritten 

as  

 

𝜓𝑛𝑥,𝑛𝑦,𝑛𝑧
=  √

2

𝑎
 x √

2

a
 x √

2

a
 . sin

nxπx

a
 . sin

nyπy

a
 . sin

nzπz

a
                 (2) 

  

 

Degeneracy: 

 

It is nothing but the quantum numbers having same Eigen value but different Eigen states. Such 

states and energy levels are called Degenerate state 
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Eg : if a state of quantum numbers are 

𝑛𝑥 = 1 ; 𝑛𝑦 = 2 ; 𝑛𝑧 = 1  , 𝑛𝑥 = 1 ; 𝑛𝑦 = 1 ; 𝑛𝑧 = 2  &  

𝑛𝑥 = 2 ; 𝑛𝑦 = 1 ; 𝑛𝑧 = 1 have  same Eigen values as  𝑛𝑥
2 + 𝑛𝑦

2 + 𝑛𝑧
2  = 6 

 

𝐸121 =  𝐸112 =  𝐸211 =  
6ℎ2

8𝑚𝑎2                (3) 

 

But the corresponding Eigen functions are  

 𝜓121 =  √
8

𝑎3   . sin
πx

a
 . sin

2πy

a
 . sin

πz

a
 

 

 𝜓112 =  √
8

𝑎3   . sin
πx

a
 . sin

πy

a
 . sin

2πz

a
                                      (4)

          

  

 𝜓211 =  √
8

𝑎3   . sin
2πx

a
 . sin

πy

a
 . sin

πz

a
 

 

 

 

 

Non - Degeneracy:  

 

 

For various combinations of quantum numbers if we have same energy Eigen value and Eigen 

function then each states and energy levels are called Non - Degenerate state  

 

Eg :   for 𝑛𝑥 = 2 ; 𝑛𝑦 = 2 ; 𝑛𝑧 = 2   we have  𝐸222 =  
12ℎ2

8𝑚𝑎2
 & 

𝜓222 =  √
8

𝑎3   . sin
2πx

a
 . sin

2πy

a
 . sin

2πz

a
  

 

1.8 Fermi- Dirac statistics 

It deals with the particles having half integral spin like electrons. They are known as Fermi 

particles or fermions. Fermi distribution function gives the distribution of electrons among the 

various energy levels as a function of temperature. 

Definition 
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‘The Probability F (E) of an electron occupying a given energy level at absolute temperature is called 

Fermi - Dirac distribution function 

i.e.,  
kT

EE f

e

EF






1

1
)(  where E – energy of the level whose electron occupancy is being 

considered; Ef – Fermi energy; k – Boltzmann constant; T – absolute temperature 

 

The probability value of F(E) is always lies between 0 and 1. 

If  F(E) = 1, the energy level is occupied by an electron. 

If F(E) = 0, the energy level is vacant and it is not occupied by an electron 

If F(E) = 0.5, There is a 50% chance for the electron occupying in that energy level. 

Effect of temperature on Fermi function 

The dependence of Fermi distribution function on temperature and its effect on the occupancy of energy 

level is shown in fig. (5) and (6) 

Case 1: at T = 0 K for E < Ef ,   
01

1
)(

VeValueSome

e

EF




 = 1
1

1

1

1


 e
 

 F(E) = 1Thus, there is a 100% chance of electron occupy below the Fermi energy of the energy level 

Case 2: at T = 0 K for E > Ef ,   
01

1
)(

VeValueSome

e

EF




 = 0
1

1

1

1

1





 e
 

 F(E) = 0 Thus, there is a no chance of electron occupy above the Fermi energy of the energy level 

  Fig(5)   Fig(6) 
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Case 3: At any temperature other than 0K and E= Ef , 5.0
2

1

11

1

1

1
)(

0








e
EF  

There is a 50% chance for the electron to occupy Fermi energy level 

With increase in Temperature, i.e., T>0K, Fermi function F (E) varies with ‘E’ as shown in figure (5) 

At very high temperature when (thermal energy) kT >>Ef (or) T → α, electron lose their quantum 

mechanical behavior and the Fermi distribution function reduces to classical Boltzmann distribution. 

Uses: 

(i) It gives the probability of the electron occupation at the given energy state at given 

temperature 

(ii) It is used to calculate the number of free electrons per unit volume at given temperature 

(iii) It is used to calculate the Fermi energy of the metal. 

 

Fermi energy level 

It is the energy level at any finite temperature above zero Kelvin at which the probability of electron 

occupation is ½ (or) 50% 

It is also the energy level of maximum energy of the filled states at zero Kelvin. 

 

1.8. Density of states  

 

 

 

 

It is defined as the number of available electron states per unit volume in an energy interval E and E+dE. 

It is denoted by Z(E) 

𝑍(𝐸) =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑒𝑛𝑒𝑟𝑔𝑦 𝑠𝑡𝑎𝑡𝑒𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝐸 & 𝐸 + 𝑑𝐸 𝑖𝑛 𝑎 𝑚𝑒𝑡𝑎𝑙 𝑝𝑖𝑒𝑐𝑒 (𝑁(𝐸) 𝑑𝐸)

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑒𝑡𝑎𝑙 𝑝𝑖𝑒𝑐𝑒 (𝑎3)
 

E 

E+dE 
n 

nx 

ny 

nz 

nx 

nz 

ny 



 

DR. R. RAJESH / A.P / PHY/VCET 13 

 

                                                           

Let us consider a cubical metal piece of side ‘a’. The electron will behave as a wave in this metal and 

confined with the allowed energy levels.  

The energy of the electron in three dimensional potential well is 𝐸 =  
ℎ2

8𝑚𝑎2  (𝑛𝑥
2 + 𝑛𝑦

2 + 𝑛𝑧
2)    (1)  

where the energy of an electron is determined by  sum of the square of quantum numbers (nx, ny, nz ). 

For this, A imaginary sphere is constructed with quantum numbers nx, ny, nz as three coordinate axes in 

a three dimensional space. A radius vector ‘n’ is drawn from the origin ‘O’ to a point nx, ny, nz.. It is 

observe that, all the points lie on the surface of this sphere will have same energy ‘E’.  

Thus, n2 = nx
2+ ny

2+ nz
2 denotes the radius of the sphere with energy ‘E’. This sphere is further divided 

into many shells. Each shell represents a particular combination of quantum numbers and therefore 

represents particular energy value 

Let us consider two such energy values E and E+dE. The number of available energy states between E 

and E+dE can be determined by finding the number of energy states between the shells of radius n and 

n+dn. 

 

Number of energy states within a sphere of radius ‘n’ = 3

3

4
n           (1) 

Since the quantum number nx,ny,nz  have only +ve integer value, we have to take only one octant of 

sphere 









8

1  

No. of available energy states within one octant of sphere of radius ‘n’    








 3

3

4

8

1
n  (2) 

                                 Corresponding   to energy ‘E’ 

                                                             

lllrly No. of available energy states within one octant of sphere of      









3

3

4

8

1
dnn  (3) 

radius ‘n+dn’ corresponding   to energy ‘E+dE’ 

 

No. of available energy states between the shell of radius ‘n’ & ‘n+dn’ 

  
















 33

3

4

3

4

8

1
ndnn      

            

  33

3

4

8

1
ndnn 

  

  N(E)  32233 33
3

4

8

1
nndndnndnn 

   

Neglecting higher power of dn which is very small, N (E) dE 








 dnn 23

3

4

8

1  (or) 
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 N (E) dE 








 dnn 2

2

    (or) N (E) dE  







 ndnn

2

                                          (4) 

 

We know that, the particle in a one dimensional box of radius ‘a’ in Schrödinger’s wave equation is 

2

22

8ma

hn
E                        (5) 

(or) 
2

2

2 8

h

Ema
n                      (6) 

(or) 
2

1

2

28










h

Ema
n                     (7) 

Differentiating eqn (6) w.r.t n & E, we get   dE
h

ma
ndn

2

28
2                   (8) 

(or) dE
h

ma
ndn

2

2

2

8
                       (9) 

Sub the value of Eqn(4) & Eqn (7) in Eqn. (9) , we get 

N (E) dE = dE
h

ma

h

Ema



















2

22

1

2

2

2

88

2

  

(or) N (E) dE = dEE
h

ma
2

12

3

2

28

2

1

2












 

Pauli’s exclusion principle states that’ two electrons of opposite spins can occupy each state’ 

N (E) dE = dEE
h

ma
2

12

3

2

28

4
2 











 = dEEa

h

m
2

1

3
2

3

2

222

2








 



  

N (E) dE =   dEEam
h

2

1

3
2

3

3
2

4



                 (10) 

Density of states is number of energy states per unit volume 

Z (E) dE =  
 

3

2

1

3
2

3

3
2

4

)(

a

dEEam
h

V

dEEN






 

Z (E) dE =   dEEm
h

2

1

2

3

3
2

4


                    (11) 

This is the density of charge carriers in the energy interval ‘E’ & ‘E+dE’. It is used to calculate carrier 

concentration in metals and semiconductors. 

 

Carrier Concentration 
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Normally all the energy states are not filled. Hence the probability of filling the electron is done by 

Fermi distribution function (E). The number of electrons per unit volume (or) density of electrons is 

called carrier concentration 

Carrier concentration of electrons in energy bands  dEEFEZnc )().(  

(or) nc =   
energyband

EFdEEm
h

)(.2
4

2

1

2

3

3

                     (12) 

(or) nc =     dE

e

Em
h

energyband kT

EE f 





1

1
2

4
2

1

2

3

3

                  (13) 

nc is known as carrier distribution function  

 

Fermi energy at 0 Kelvin 

We know that 0 K maximum energy levels that can occupied by the electron is called Fermi energy 

level (
0f

E ) 

(i.e.,) at 0 K for E<Ef and therefore F (E) = 1 

Integrating equation 12 within the limits 0 to 
0f

E , then the carrier concentration is  

     .2
40

0

2

1

2

3

3 
fE

c
dEEm

h
n


        =         .2

4 0

0

2

1

2

3

3
dEEm

h

fE


  

(or)  2

3

3 0
2

3

8
fc mE

h
n


           (14) 

(or) 
3

2
2

8

3

20



















c

f

n

m

h
E          (15) 

This is the Fermi energy of electrons in solids at absolute zero. Thus, Fermi energy of a metal depends 

only on the density of electrons of that metal. 

When the temperature increases .Fermi level (or) Fermi energy slightly decreases 

It can be shown that 
0

0

2
2

1
12

f f

f

kT
E E

E


  
    
    

 

Importance: 

 It is the level which separates the filled valence energy level and vacant conduction energy 

levels 

 It determines the energy of the particle at any temperature  

 

Average energy of electron s at 0K 

Average energy of electron (Eavg) =      (16) 
Total energy of electrons at 0K (ET) 

Number of Energy States at 0K (nc) 
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Here, Total Energy of electrons at 0K = Number of Energy states at 0K x Energy of the electron 

 


0

0

.)(
fE

T
EdEEZE     

   dEEEm
h

E
fE

T
..2

4 0

0

2

1

2

3

3 


 

(or) 
 

2

5
2

4
2

5

2

3

3

0F

T

E
m

h
E 

  

(or)   2

5

2

3

3 0
2

5

8
FT Em

h
E 

   (17) 

Substituting Eqn (13) & (15) in (14), we get 

 

 

2

3

2

5

2

3

2

3

3

2

5

2

3

3

00

0

0

5

3

2
3

8

2
5

8

FF

F

F

Avg EE

Em
h

Em
hE 










 

The average energy of electron at 0K is 
05

3
fAvg

EE 
 

 

1.9. Electron in periodic potential 

Band theory of solid (Zone theory) 

 The free electron theory explains the properties like thermal conductivity, electrical 

conductivity and specific heat of most of the metals. But it fails to explain why some solids are 

conductors, some are insulators and others are semiconductors. A solution to this problem was 

given by band theory of solids and is called zone theory. According to this theory, the potential 

energy of the electron inside the crystal through which an electron move is supposed to be 

constant (zero). So it is completely free to move about in the crystal, restrained only by the 

surface of the crystal. 
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Postulates: 

I. According to band theory, potential energy of electron within the crystal is periodic due 

to periodicity of the crystal. i.e., free electron move inside periodic lattice field. 

II. The potential energy of the solid varies periodically with the periodicity of space lattice 

‘a’ which is nothing but the interatomic spacing. 

Inside a real crystal, the electrons (-) move through periodic arrangement of positively charged 

holes (+). Let us imagine one dimensional periodic potential distribution for a crystal (Fig). 

Here the potential energy of the electron at the positive ion site is zero and is maximum when 

it is half way between the adjacent nucleui. 

Brillouin zones are the boundaries that are marked by the values of propagation vector k in 

which the electrons can have allowed energy values without diffraction. since k is a vector, it 

has different values along different directions. 

Explanation: 

The relationship between the wave vector and the energy of the electron in constant potential 

field can be got as follows. 

We know, in a length of potential box ‘l’ the energy of the electron in a constant potential 

field. 

2 2

28

n h
E

ma
                          (1)          

Also, we know that wave vector 
n

k
a


   (or) 

2 2
2

2

n
a

k


                                                  (2) 

Substituting equation (2) in (1) we get 
2 2

28

k h
E

m
               (3) 

a plot is made between the total energy ‘E’ and the wave vector k, for different values of k 

with  n = ±1, k = ±π/a.   n = ±2, k = ±2π/a, etc., For the above values of k, the curve is 

obtained as shown in figure. which is in the form of a parabola with discontinuities. 

From the figure it can be seen that the energy of the electron increases continuously from 0 to 

±π/a then the electron meets the wall and is reflected. This range of allowed energy values in 

te region between - π/a to π/a is called first Brillouin zone. The second allowed energy values 

consists of two parts: one from   π/a to 2π/a and another from - π/a to -2 π/a is called second 

Brillouin zone and so on. 

Therefore we can conclude that the electron can go from one Brillouin zone to the other only 

if it is supplied with an energy equal to forbidden gap energy. This forbidden gap is the one 

which decides whether the solid is an insulator, semiconductor (or) conductor. 
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 r1 

r2 

r3 

K 

L 

Brillouin zone can be constructed by drawing vectors from the origin to the nearest lattice 

point and then draw Bragg planes perpendicularly between these two points. The region 

below this plane are said to Brillouin zone. 

   

      First Brillouin Zone (-π /a to π/a) 

     Second Brillouin Zone (-2 π /a to - π/a & 2 π /a to π/a) 

      Third Brillouin Zone (-3 π /a to - 2π/a & 3 π /a to 2π/a) 

 

 

 

 

1.10 Energy bands in solids 

(i) Free and bound electrons 

In an isolated atom all the electrons are tightly bounded with the central positive nucleus and 

revolves around various orbits. The number of electrons the outermost orbit are called valence 

electrons. In the outermost orbits, the attractive force between the nucleus and electrons will 

be very less, so that the electrons can be easily detached from the nucleus. These detached  

electrons from the outermost orbits are called free electrons. But as far as the innermost orbits 

are concerned, the electrons are tightly bounded with positive nucleus, and hence they are 

termed as bound electrons.  

                                                                             Valence electrons 

               Nucleus 

               Bounded electrons 

(ii) Energy levels 

We know that each orbit of an atom has fixed amount of energy associated with it. The 

electrons moving in a particular orbit possess the energy of that orbit. The larger the orbit, the 

greater is its energy. So, the outermost orbit electrons possess more energy than the inner 

orbit electrons. A convenient way of representing the energy of different orbits are called 

energy levels as shown in figure. Let E1 be the energy level of K shell, E2 be the energy level 

of L shell, E3 be the energy level of M shell and so on. The larger the orbit of an electron, the 

greater is its energy and higher is the energy level. 

                                                               r3                      M ( III Energy level) 

 Radii r2 L ( II Energy level) 

 r1 K (I Energy level) 

 Edge of nucleus 
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From the figure it is clear that the electrons can revolve only in certain permitted orbits of radii 

r1, r2 and r3 etc., and not in any arbitrary orbit. Since the electrons are not allowed in between 

the radii r1 and r2 or between the radii r2 and r3 etc., there won’t be any electronic energy levels 

in between those radii so called forbidden radii. These unallowed energy levels are called 

forbidden energy levels. 

(iii) Energy bands 

It has to be noted that as long as the atoms are widely separated, they have identical energy 

levels. But, once the atoms are brought together the interatomic force of attraction between the 

atoms in the solid may modify the energy levels of a solid as energy bands. Now let us discuss 

how energy levels of single free atom becomes bands in solids. 

 

Let us consider two identical atoms of diameter (d) separated at a distance (r), so that the 

electronic energy levels of one atom [E1
1(K – shell) and E2

1(L – shell)] do not affect the 

electronic energy levels of the other atom [E1
2(K – shell) and E2

2(L – shell)] as shown in figure 

                                                                                                                   L – shell                      E2
2 

 

              L – shell                   E2
1              L – shell                      E2

2                L – shell                  E2
1 

 

 

              K – shell                   E1
1              K – shell                      E1

2                K – shell                   E1
2 

 

                                                                                                                 K – shell                   E1
1 

  

        Atom1      d                         Atom 2          d  

                                         r>>d                                                                      r = d 

 

Now when the atoms are bring closer to each other, some force of attraction occurs between 

them and according to quantum mechanics, their wave functions will start overlapping. 

Therefore when two atoms are brought closer, it does not remains as two independent atoms, 

rather it forms a single two – atom system with two different energy levels to form energy 

band as shown in figure. 

 

Origin of energy band formation in solids 

 

We know that when two atoms of equal energy levels are brought closer to eachother, the 

original energy levels viz E1 and E2 splits each into two energy levels. i.e., the K- shell energy 

E1 splits in to E1
1 and E2

1. Similarly the L – shell energy E2 splits in to E1
2 and E2

2. Now when 

three atoms are brought closer together, the original energy levels viz E1 and E2 splits each into 

three energy levels viz E1
1 E1

2 and E1
3and E2

1 E2
2 and E2

3respectively. These type of 

transformations from the original energy levels into two (or) more energy levels is known as 

Energy level splitting 

 

Energy bands 
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Therefore, if ‘N’ number of atoms of equal energy levels are brought closer to from a solid, 

then it forms a closely spaced continuous energy levels, so called energy bands. 

Hence an energy band can be defined as, the range of energies possessed by an electron in a 

solid. The magnified view of the energy band which consists of a large number of very closely 

spaced energy levels as shown in figure. 

 

Inner Filled Bands, Valence band and Conduction band 

During the formation of energy bands, the inner filled energy levels forms a energy band called 

Inner filled bands. Similarly the electrons in the outermost shells of atoms forms an energy 

band called valence band. The valence band will be of completely filled (or) partially filled 

with electrons, based on the type of materials. 

If an electron comes out from valence band for conduction, then they form an energy level 

corresponding to the energy band called conduction band 

 

Forbidden gap 

While referring to energy bands, they are separated by small regions which does not allow any 

energy levels. Such regions between the energy bands are called forbidden gaps (or) forbidden 

energy gap Eg as shown in figure. 

 

 

                                                              L – shell                 E2
4 

E2
3                                                                                                          E2

3 

E2
2      L – shell                                                                    E2

3 

E2
1                                                                                                                                    E2

1   

                                                                                     Bandgap                                Forbidden band gap 
 

                                                                                            E1
4 

E1
3          K – shell                                K – shell                 E1

3    
E1

2                                                                                                                                   E1
2 

E1
1                                                                                                                                  E1

1 

 

 

 
 

Based on band theory and the presence of forbidden band gap the materials are classified in 

to three categories viz: 

(i) Metals (or) Conductors 

Here, there is no forbidden band gap. Hence the valence band and conduction band overlap 

with each other. Since the free electron are relatively available in large number, even a 

small external field induces the electrons from the valence band to conduction band and 

hence conduction easily occurs.  

Example: Copper, Aluminium, etc. 

(ii) Semiconductors 

Conduction Band 

Fully (or) partially filled 

Valence Band 

Inner Filled Bands 

E
n
er

g
y
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Here, the forbidden band gap is small (say 0.5 to 1.5 eV) and hence the width of forbidden 

gap is smaller than allowed energy bands. Generally, the free electrons in valence band is 

comparatively less compared to conductors because of finite forbidden gap and hence the 

semiconductor requires external field with energy greater than or equal to this forbidden 

gap energy such that conduction process occurs. 

Example: Germanium, Silicon, etc. 

(iii) Insulators 

Here the width of the forbidden gap is wider (say 3 to 5.47 eV) and hence the width of 

forbidden gap is larger than allowed energy bands. Therefore in case of insulator, a 

sufficiently large energy is required for conduction to occur. 

Example: Diamond, Dielectrics, etc, 

 

1.11 Free electron approximation 

We know in solids there exists the ionic cores which are tightly bounded to the lattice location, 

while the electrons are free to move here and there throughout the solid. This is called free 

electron approximation. 

In free electron approximation the following points are observed: 

(i) The potential energy of the electron is assumed to be lesser than its total energy. 

(ii) The width of the forbidden bands (Eg) are smaller than the allowed bands as shown in the 

figure 

(iii) Therefore, the interaction between the neighbouring atoms will be very strong. 

(iv) As the atoms are closer to each other, the inter atomic distance decreases and hence the 

wave functions overlap with each other as shown in figure 

 

1.12  Tight binding approximation 

Tight binding approximation is exactly an opposite approach of discussing the atomic 

arrangements, when compared to free electron approximation. 

Here instead of beginning with solid core, we begin with the electrons, i.e., All the electrons 

are bounded to the atoms. In other way we say that the atoms are free, while the electrons are 

tightly bounded. Hence, this is called tight binding approximation 

The following points are observed in tight binding approximation: 

(i)  The potential energy of the electron is assumed to be almost equal to its total energy. 

(ii) The width of the forbidden bands (Eg) are larger than the allowed bands as shown in the 

figure 

(iii) Therefore, the interaction between the neighbouring atoms will be weak. 
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(iv) As the atoms are not closer, the inter atomic distance increases and hence the wave 

functions will not overlap with each other as shown in figure 

 

Explanation 

Let us consider the atoms with larger inter atomic distance (a2) as shown in figure. Here the 

atoms are far apart, and all the bounded electrons have fixed energy levels. Therefore when a 

solid is formed by using the same element, then the energy levels occupied by the electrons in 

each atom will be identical, which lead to tight binding approximation. 

Now, when we bring the atoms closer to each other to form the solid, then inter atomic 

distance (a1) decreases. Therefore, the outer shell electrons begin to overlap and the energy 

levels also splits as shown in figure. 

If the inter atomic distance is further reduced, then the splitting of energy level happens for 

the inner shall electrons also, which lead to free electron approximation. 

 

Energy 

 

                                                                           Free electron      Tight bind 

                                                                      allowed energy bands 

                                                                                                       Forbidden band gap  

                                                                                                                                      a1                                       a2 

                                                         

 

 

                                                a1           a2 Inter atomic distance                                                                  

  

 

1.13 Effective Mass and Concept of Hole 

Effective mass of an electron is the mass of the electron when it is accelerated in a periodic 

potential and is denoted by m* 

When an electron of mass m is placed in a periodic potential and if it is accelerated with the 

help of an electric or magnetic field, then the mass of the electron is not constant, rather it 

varies with respect to the field applied. That varying mass is called as effective mass (m*) 

To study the effect of electric field on the motion of an electron in one dimensional periodic 

potential, let us consider the Brillouin zone which contains only one electron of charge e   in 
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the state k , placed in an external field ‘E’. Due to the field applied the electrons gains a group 

velocity quantum mechanically and therefore the acceleration changes. 

The group velocity with which the electron can travel is g

d
V

dk


                                       (1) 

Where k → wave vector; ω→ angular velocity of electron  2   (or) 
2 E

h


 

         (2) 

Substituting equation (2) in equation (1) we get 

Group velocity  

2
g

dE
V

h dk


    (or) 

1
g

dE
V

dk
                                        (3) 

If the electron moving in a crystal lattice with momentum P, then the wavelength associated 

is 
h

p
   (or) 

2

2

h
p



 
   (or) P k                                                                                                     (4) 

Differentiating equation (4) w.r.t to t  
dP dk

dt dt
                       (5) 

(or)  
dk

F
dt

   (or) 
F dk

dt
                   (6) 

we know acceleration  
1gdV d dE

a
dt dt dk

 
   

 
  

                                
2

2

1 d E dk

dk dt
                                                                           (7)  

Substituting equation (6) in equation (7), we get 

2

2

1
g

d E F
a

dk
   (or)  

2

2 2

1
g

d E
a F

dk
   (or) 

2

2 2/
gF a

d E dk
     (8) 

Equation (8) resembles with newton’s force equation  

i.e., F = eE = m*a          (9) 

Where m* is the effective mass of the electron. 

Comparing equation (7) and (8), we can write 
2

*

2 2/
m

d E dk
                                          (10) 

Equation (10) represents the effective mass of an electron in a periodic potential, which 

depend on 
2

2

d E

dk
   

Special cases: 
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(i) If  
2

2

d E

dk
 is +ve, then effective mass m*is also positive 

(ii) If  
2

2

d E

dk
 is -ve, then effective mass m*is also negative 

(iii) If  
2

2

d E

dk
 is zero, then effective mass m* becomes infinity 

Negative effective mass (or) concept of hole 

To show that the effective mass has negative value. Let us take the Energy - wave vector (E-k) 

of a single electron in a periodic potential. i.e., consider the 1st Brillouin zone (allowed energy 

band) alone as shown in figure. 

In the E – k curve, the band can be divided in to two bands viz. upper band and lower band with 

respect to a point (P) called a Point of inflection. 

(i) In the lower band the value of 
2

2

d E

dk
 is a decreasing function from the point of inflection 

 
2

2

d E

dk
is +ve and hence m* should be +ve  in the lower band. If a plot is made between 

m*and k for different values of 
2

2

d E

dk
, we get the curve as shown in figure 

(ii) In the Upper band of E -  k  the value of 
2

2

d E

dk
 is a increasing function from the point of 

inflection 

 
2

2

d E

dk
is -ve and hence m* should be -ve  in the upper band. If a plot is made between m*and 

k  for different values of 
2

2

d E

dk
, we get the curve as shown in figure 

(iii) At the point of inflection, the value of 
2

2

d E

dk
 = 0 and hence in m* - k plot, effective mass 

goes to infinity. 

The electron with the negative effective mass is called Hole, in other words the electron in 

the upper band which behaves as a positively charged particle is called hole. It has the same 

mass as that of an electron but with positive charge. 

Therefore, the advantage of the concept of hole is, for a nearly filled band with n number of 

empty states as shown in figure n number of holes arises 

In other words, we can say that the presence of hole is attributed to an empty state, for an 

electron to be filled. Thus, based on the hole concept several phenomena like Thompson 

effect, Hall effect, etc., are well explained.  
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                                         Energy (E)                                            
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