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2.1. Introduction 

Semiconducting material has electrical conductivity between a good conductor and a good 

insulator. It is a special class of material which is very small in size and sensitive to heat, light 

and electricity. Semiconducting materials behave as insulator at low temperature an as 

conductor at high temperature. Moreover, these materials have two types of charge carriers i.e., 

electrons and holes. 

Germanium and Silicon are the two elemental semiconductors used in diodes an transistors. 

Gallium arsenide (GaAs) and Indium phosphide (InP) are the two compound semiconductors 

used in LEDs and Laser diodes. 

The study of semiconducting materials opened a new branch of technology called solid state 

electronics due to their wide applications in semiconductor devices in engineering & 

technology. It leads to the development of IC’s, microprocessors, computers, etc., 

2.2. Definition (based on electrical resistance) 

Semiconductor has electrical resistance which is lesser than an insulator but more than that of 

conductor. Its electrical resistivity is in the order of 10-4 to 0.5 ohm meter. 

Based on Energy band 

A semiconductor has nearly an empty conduction band and almost filled valence band with a 

very small energy bandgap (~1eV) 

Properties 

 They have crystalline structure.  

 Bonding between the atoms is formed by covalent band 

 They have empty conduction band at 0 K 

 They have almost filled valence band 

 The conductivity of the semiconductor increases due to the temperature & impurity.  

 They have negative temperature coefficient of resistance.  

 In semiconductors both the electron and holes are charge carriers and will take part in 

conduction  

This property is in contrary to that of metals in which if temperature / impurity increases, their 

electrical resistivity decreases. 

2.3. Classification of semiconductors 

Semiconductors are of two types and are classified on the basis of the composition of materials: 

 Elemental semiconductors, and 

 Compound semiconductors 

2.   Semiconductor Physics 
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1. Elemental semiconductors 

 The semiconductors which are made from single element of fourth group elements in periodic 

table are known as elemental semiconductors. They are also called as indirect bandgap 

semiconductors. Example: Silicon (Eg = 072 eV), Germanium (Eg = 1.1 eV) 

2. Compound Semiconductors 

The semiconductors which are combined from third and fifth group or second and sixth group 

elements in periodic table are known as compound semiconductors. They are also called as 

direct bandgap semiconductors.  

Characteristics 

It has large forbidden bandgap and mobility 

They are formed by ionic and covalent bonds. 

Recombination of electron and hole takes place directly. 

Uses 

It is used in photovoltaic cell, photoconductive cell, LEDs and Laser diodes. 

Differences between Elemental and compound semiconductors. 

S.No Elemental Semiconductor Compound Semiconductor 

1. Made of single element  (Si, Ge) Made of compounds (GaAs, InP) 

2. Indirect band gap semiconductor Direct bandgap semiconductors 

2. Heat produced during recombination Photons emitted during recombination 

3. Life time of charge carriers is more Life time of charge carriers is less 

4. 
They are used for making diodes, 

transistors, etc., 

They are used for making LED’s, Laser diodes 

and IC’s, etc., 

5. Current amplification is more Current amplification is less 

 

2.4. Direct and Indirect bandgap semiconductors 

Semiconductors also classified as (i) direct bandgap semiconductor and (ii) indirect bandgap 

semiconductor. The electrons and holes in the semiconductor have energy and momentum. The 

momentum (k) depends on the energy (Ek). A plot of Ek versus k is shown in figure. The lower 

curve represent energy and momentum values of holes in valence band of semiconductor. 

Similarly upper curves denote corresponding values for electrons in conduction band.  

In direct bandgap semiconductor, the energy maximum of valence band and energy minimum 

of conduction band are having same momentum value.  

During the recombination of electron from CB with hole in VB, the momentum of the electron 

remains virtually constant. The energy equal to bandgap energy is released as light photon. 
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But, in case of indirect bandgap semiconductor, the maximum energy of valence band and 

minimum energy of conduction band are having different values of momentum. During 

recombination, electron first loses momentum such that it has momentum equal to the 

momentum corresponding to energy maximum of valence band. To converse the momentum, 

emission of third particle known as a phonon is generated. Thus, in this type of recombination 

phonon is generated. 

 

2.5. Types of semiconductors 

Semiconductors are of two types and are classified on the basis of the concentration of electrons 

and holes in the materials: 

 Pure or intrinsic semiconductors, and 

 Doped or extrinsic semiconductors 

2.6. Pure or Intrinsic semiconductors 

Highly pure semiconductors are called intrinsic semiconductors, which means that the 

concentration of electrons must be equal to the concentration of holes. 

 

The number of charge carriers per unit volume of the material is called carrier concentration 

or density of charge carriers 

Electrons in Conduction Band 

The number of electrons whose energy lies in the range   dn     = Z (E) F (E) dE                  (1) 

“E” & “E+dE” in the conduction band is given by  

 

Where Z (E) – density of states in the energy ranges ‘E’ &’E + dE’ 

F (E) – Probability of number of electron occupying in the conduction band 

 

The number of electrons in the conduction band for the entire region is calculated by 

integrating equation (1) from top energy level ‘Ec’ to bottom energy level ‘α’   
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i.e., 



cE

dEEFEZn )()(            (2) 

 

W.K.T, Density of states in the conduction band in the 

   energy range ‘E’ & ‘E+dE’ is given by     Z (E) dE =   dEEm
h

2
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3

3
2

4      (3) 

 

                                                                                                                                    +α 

The bottom edge of the conduction band (Ec)                 E    

 represents the potential energy of an electron at rest. Therefore, Ec 

(E - Ec) is the kinetic energy of the conduction electron at higher EF 

 energy levels. Therefore the equation (3) is modified as Ev 

 Fig(i) -α 

   Z (E) dE =     dEEEm
h
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  Since the electron is moving in a periodic potential, its mass m is replaced by its effective 

mass me
*.  

The probability of electron occupancy is given by 
kTEE Fe

EF
/)(

1

1
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


   (5) 

Substituting (4) & (5) in (2), we get,     
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For all possible temperature, E – EF >>kT, hence in the denominator, kT

EE

kT

EE FF

ee


1  

Now equation (6) becomes,  
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To solve this, assume the following: 

E - Ec = x E = Ec E = +α 

E = Ec + x Ec - Ec = x α – Ec = x 

dE = dx x = 0 x = α 
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Using gamma function, 
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Substituting eqn (9) in (8), we get,      
2

2
4 2

1

2

3

/
2

3
*

3

 kT
em

h
n

kTEE

e

cF 


      

(or)                                                  
kTEEe CFe

h

kTm
n

/)(
2

3

2

*2
2













               (10) 

This is the expression of electrons in the conduction band of an intrinsic semiconductor. 

Concentration of holes in the Valence band  

We know that if an electron is transferred from valence band to conduction band, a hole is 

created in valence band. Let dp be the number of holes in the valence band for the energy 

range               E & E+dE.  dp = Z (E) (1 – F (E)) dE                                         (1) 

Where Z (E) – Density of states in the energy range E & E+dE 

(1 – F(E) ) – Probability of unoccupied (vacant) electron state (presence of hole) in valence 

band 

(1 – F (E)) dE = 
kTEE

kTEE
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E < EF in valence band, (E –EF) has negative quantity & hence in denominator 
kTEE Fe

/)( 
is 

very small when compared with 1, hence 11
/)(


 kTEE Fe  

kTEE FeEF
/)(

)(1


   (3) 

Ev is the top level in the valence band and having potential energy of a hole at rest. Hence  

(Ev – E) is the kinetic energy of the hole at level below EV. Hence, 

 Density of states in the valence band is     dEEEm
h

dEEZ
Vh

2

1
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3
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3
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4
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 Where, mh
* - effective mass of the hole in the valence band 
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Substituting equation (4), (3) in (1), we get,     dEeEEm
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The number of holes in the valence band for the entire energy range is obtained by integrating 

Above equation between the limits –α to EV 

i.e.,     dEeEEm
h
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To solve this, assume the following: 

Ev - E = x E = - α E = Ev 

E = Ev - x Ev -(- α)  = x Ev– Ev = x 

dE = - dx x = α x = 0 
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Using gamma function, 
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This is the expression of holes in the valence band of an intrinsic semiconductor 

 

Intrinsic Carrier Concentration: 

In intrinsic semiconductor, carrier concentration of electrons in conduction band (ni) =  
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carrier concentration of holes in valence band np & hence the intrinsic carrier concentration is 

ni
2= ni x np 
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Where Ec – Ev = Eg is the forbidden energy gap. 

We know that, for an intrinsic semiconductor, the density of electron in the conduction band 

is equal to the density of holes in the valence band. 

i.e.,  ni = np           (3) 
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
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hence the above equation becomes, 




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 


2
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F
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E                                    (4) 

Thus, the Fermi level is located half way between the top of the valence band and bottom of 

the conduction band. Its position is independent of temperature. If  me
* < mh

*,thus, the Fermi 

level is just above the middle of energy gap and its rises slightly with increasing temperature. 

 

2.7 Extrinsic Semiconductors 

The application of intrinsic semiconductors is restricted due to its low conductivity. In 

electronic devices, high conducting semiconductors are more essential. The concentration of 

either electrons or holes in a semiconductor is increased depending upon the requirements in 

the electronic devices. 

Extrinsic Semiconductors are classified into two categories based on the concentration of the 

charge carriers namely: 

        1. n - type semiconductors (electrons), and 

        2. p - type semiconductors (holes). 

1. n - type Semiconductors 

When a pentavalent atom such as arsenic (antimony, bismuth, phosphorus) is added as a dopant 

to the tetravalent silicon atom, the arsenic atom will occupy one site of the silicon atom. Thus, 

out of five free electrons in arsenic, four electrons make covalent bonds with the four 

neighbouring silicon atoms and the fifth one is loosely bound to the silicon atom, as shown in 

fig. 2 
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                            Fig. 2 Doping in n-type semiconductors. 

The energy required to ionize the fifth electron is very less and hence, the thermal energy of 

the material shifts the free electron to the conduction band. Each arsenic atom contributes one 

free electron to the crystal and hence, it is called a donor impurity. In this type of 

semiconductor, the concentration of charge carriers (i.e., electrons) is more than that of holes. 

Therefore, these semiconductors are called n-type semiconductors. In an n-type semiconductor, 

electrons are the majority carriers while holes are the minority carriers. 

Derivation 

In n –type semiconductor, the donor level is just below the conduction band. Nd denotes the 

donor concentration & Ed represents the energy of the donor level. 

Density of electrons per unit volume in the conduction band is given by 
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here Ef – Fermi energy; Ec – Energy corresponding to the bottom of the conduction band 

Density of the ionized donors = Nd [1 – F(E)]  
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
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Density of ionized donors      = 
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


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
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
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At equilibrium, the density of electrons in conduction band = Density of ionized donors. 

Equating (1) & (2), 
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EF lies more than few kT above donor levels, hence 
kTEE Fde

/)( 
is large compared to ‘1’. 

Hence the ‘1’` in denominator of R.H.S of equation (3) is neglected. 
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Taking log on both sides, 
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                  Eg 

Valence Band 

Conduction Band 

Intrinsic 
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  (or)  































2/3

2

*2
2

log2

h

kTm

N
kTEEE

e

d

cdF



   

   (or) 


































2/3

2

*2
2

log
22

h

kTm

NkTEE
E

e

dcd

F



      (6) 

Substituting the expression of EF from (6) in (1), we get 

































































































kT

E

h

kTm

NkTEE

h

kTm
n

c

e

dcd

e

2/3

2

*

2

3

2

*

2
2

log
22

exp
2

2





   (7) 


































































































2/3

2

*

2

3

2

*

2
2

log
2

1

2

2
exp

2
2

h

kTm

N

kT

EEE

h

kTm
n

e

dccde




 

 





































































































2/1
2/3

2

*

2/1
2

3

2

*

2
2

log
2

exp
2

2

h

kTm

N

kT

EE

h

kTm
n

e

dcde




 

kTEE

e

d

e cde

h

kTm

N

h

kTm
n

2/)(

4/3

2

*

2/1

2

3

2

*

2

22
2

































       (8) 

Rearranging the expression (8), we have 

(or)        kTEEe

d

cde
h

kTm
Nn

2/

4/3

2

*
2/1 2

2













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(or)     kTEe

d
e

h

kTm
Nn 2/

4/3

2

*
2/1 2

2 











 

Where ▲E= Ec - Ed is the ionization energy to transfer Energy from donor energy level to the 

conduction band. 

Results: 

 The density of electrons is proportional to square root of donor concentration and 

valid at low temperature alone 

 At high temperature, intrinsic carrier concentration must take along with this 

concentration 

Variation of Fermi level with temperature and impurity concentration 

Fermi level of n – type semiconductor is    


































2/3

2

*2
2

log
22

h

kTm

NkTEE
E

e

dcd

F



             (1) 

At T = 0K, the above equation reduces to 
2

cd

F

EE
E


      (2) 

(i) At 0K, Fermi level lies exactly at the centre of the donor level and bottom of the 

conduction band. 

(ii) As the temperature is gradually increased from a low temperature, the contribution of 

electron increases and at very high temperature, it far exceeds the donor concentration 

and the intrinsic behaviour predominates at higher temperature. 

(iii) Fermi level shifts downwards when the temperature is increased and finally reaches the 

middle of the band gap (or) intrinsic Fermi level. 

(iv) Further when the concentration of donors increases, the extrinsic behaviour also extends 

up to very high temperature & Fermi level reaches the middle of the band gap only at 

high temperature. 
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2. p -type Semiconductors 

Instead of a pentavalent atom, the addition of a trivalent atom indium (In) to the tetravalent 

silicon atom, occupies the crystal site of the silicon atom as shown in Fig.3 

 

 

        Fig.3 

The three valence electrons in indium make covalent bands with the three neighbouring silicon 

atoms, whereas the fourth bond has an empty space known as hole due to the deficiency of one 

electron. Therefore, when a trivalent atom is added to silicon, it creates a hole in the valence 

band. The dopant (indium) accepts an electron from the neighbouring silicon atom to form a 

covalent bond and hence, it is called an acceptor. The hole in the valence band moves freely 

and hence, the current flows through the material. 

         This type of electrical conduction will take place only when the dopant valency is less 

than that of the parent atom. Such semiconductors are called p – type semiconductors. In a p- 

type semiconductor, holes are the majority current carriers and electrons are the minority 

current carriers. 
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In p - type semiconductor, the acceptor energy level is just above the valence band. Let Ea 

represents the energy of the acceptor level and Na represents the number of acceptor atoms 

per unit volume. 

Density of holes per unit volume in valence band is given by kTEEh Fve
h

kTm
p

/)(
2

3

2

*2
2













   (1) 

Where Ev is the energy corresponding to the top of the conduction band 

Density of the ionized acceptors = Na F (Ea) =
kTEE

a

Fae

N
/)(

1



               (2) 

Since Ea – EF is very large when compared to kT. 
kTEE Fae

/)( 
is a large quantity and thus ‘1’ in 

denominator of R.H.S of equation(2) is neglected. hence, equation(2), reduces to 

Na F (Ea) =
kTEE

akTEE

a aF

Fa

eN
e

N /)(

/)(




                   (3) 

At equilibrium, the density of holes in Valence band = Density of ionized acceptors 

kTEE

a

kTEEh aFFv eNe
h

kTm /)(/)(
2

3

2

*2
2










 
                   (4) 

Taking log on both sides, 

 kTEE

a

kTEEh aFFv eNe
h

kTm /)(/)(
2

3

2

*

log
2

2log
























 
 

(or) 
kT

EE
N

kT

EE

h

kTm
aF

a

Fvh




























log

2
2log

2

3

2

*
          

(5) 

Rearranging the expression (5), we have 

























 2

3

2

*2
2loglog

h

kTm
N

kT

EEEE
h

a

FvaF
  

(or) 
 























































2

3

2

*2
2

log
2

h

kTm

N

kT

EEE

h

a

e

vaF


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(or) 





















































2

3

2

*2
2

log)(2

h

kTm

N
kTEEE

h

a

evaF



 

(or) 
























































2

3

2

*2
2

log
22

)(

h

kTm

NkTEE
E

h

a

e

va

F



      (6) 

Sub. The expression of EF in equation (6), we get 


































































































kT

h

kTm

NkTEE
E

h

kTm
p c

h

aav

v

h

2/3

2

*

2

3

2

*

2
2

log
22

exp
2

2





              (7) 

(or) 


















































































2/3

2

*

2

3

2

*

2
2

log
2

1

2

2
exp

2
2

h

kTm

N

kT

EEE

h

kTm
p

h

aavvh




   (8) 

(or) 
kT

EE

h

a

h
av

e

h

kTm

N

h

kTm
p 2

2

1
2/3

2

*

2

1

2

3

2

*

2

22
2














































  

(or)     kTEEh

a

ave
h

kTm
Np

2/

4/3

2

*
2/1 2

2













       (9) 

If  Ea –Ev = ▲E is the acceptor ionization energy required to move the electron from valence 

band to acceptor energy level, then equation (9) becomes, 

  kTEh

a e
h

kTm
Np 2/

4/3

2

*
2/1 2

2 

















       (10) 
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Results: 

 Density of holes in valence band is proportional to square root of acceptor concentration 

 At very high temperature p – type semiconductor behaves like an intrinsic 

semiconductor 

Variation of Fermi level with temperature 

We know that 
























































2

3

2

*2
2

log
22

)(

h

kTm

NkTEE
E

h

a

e

va

F



     (1) 

At T = 0K , the above expression becomes, 
2

va

F

EE
E


      (2) 

At 0K the Fermi level lies exactly halfway between acceptor level Ea and top of the valence 

band Ev 

 

As the temperature increases, the Fermi level shifts upwards, at a particular temperature, 

when all the acceptor atoms are ionized and Fermi level crosses the acceptor level  

At very high temperature, the Fermi level is shifted to intrinsic Fermi level and behave as 

intrinsic semiconductor. 

2.8. Variation of carrier concentration with temperature and impurity. 

In extrinsic semiconductor, the resistivity decreases linearly with increase in temperature. 

This variation is considered under three different regions. 

 Ionization or impurity range 

 Exhaust or extrinsic range 
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 Intrinsic range  

 

 
For a n-type semiconductor, the variation of carrier concentration n and p with temperature is 

shown in figure. At 0 K, both conduction and valence bands are free from any charge carriers 

and hence, the electrical conductivity is zero. With increase in temperature, the donor atoms 

gets ionised and hence electron concentration in conduction band increases with temperature 

until all the donor atoms are ionised. This range is known as impurity / ionization region. 

When the temperature is further increased to room temperature, there are no more donor atoms 

to be ionised and hence the concentration of electrons in conduction band remains constant 

over a certain temperature range. This region is known as exhaust or extrinsic region. As the 

temperature is increased further, the electrons in valence band are lifted across the forbidden 

gap to conduction ban. Thus, electron concentration increases in conduction band considerably. 

With further increase in temperature, more and more electrons from valence band reach 

conduction band and completely outnumber the donor electrons. The material practically 

becomes intrinsic and so this range is called intrinsic range.  

2.9. Random motion and mobility 

In the absence of an electric field, the free electrons moves in all directions in a random manner. 

They collide with other free electrons and positive ion core during the motion. This collision 

is known as elastic collision. As the motion is random, the resultant velocity in any particular 

direction is zero. When an electric field is applied in a semiconducting material, the free charge 

carriers such as free electrons and holes attain drift velocity vd. The drift velocity attained by 

the carrier is proportional to the electric field strength E.  

i.e., vd  E (or) vd = E. 

Where  is the proportional constant called mobility of the charge carriers. Here the value of 

drift velocity is different for different semiconductors and for different types of charge carriers. 

The net current flow in semiconuctor is due to drift and diffusion transport. 
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Drift transport 

In the absence of electric field, the random motion of charge carriers will not contribute 

current because the charge movement in one direction is balance by the charge movement in 

the other direction. When the external field is applied, the electrons are attracte to the positive 

terminal and the holes are attracte to the negative terminal. This net movement is termed as 

drift transport. This transport overcomes the thermal movement and produces current density 

Therefore, current density due to electron drift is Je = ne e vd    (1) 

Since vd = μeE           (2) 

Substitute (2) in (1), we get 

Je = ne e μeE            (3) 

Similarly, for holes, Jh = nh e μhE         (4) 

Then the total drift current is jdr = ne e μeE+ nh e μhE     (5) 

We know that J = σE          (6) 

Therefore σdr = ne e μe+ nh e μh        (7) 

For an intrinsic semiconductor ne = nh = ni 

& Hence σdr = ni e[ μe+  μh ]         (8) 

Diffusion transport 

The non-uniform distribution of charge carriers creates the regions of uneven concentrations 

in the semiconductor. The charge carriers moving from the region of higher concentration to 

the regions of lower concentration leading to diffusion current 

Hence the concentration of charge carrier (Δne ) varies with distance x in a semiconductor. 

The rate of flow of charge carriers is   en
x


 


  

Rate of flow of electrons =  e eD n
x


 


 

Where De is the electron diffusion coefficient 

Current density due to electrons = charge X rate of flow of electrons  

   i.e.,   Je  =  e eD e n
x





  

Similarly for holes, Jh =  h hD e n
x


 


 

Thus, if an electric field is applied to the semiconductor, the total current contribution is due 

to both drift and diffusion transport. 

Net current due to both electrons and holes can be obtained as 
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   total e e e e h h h hJ n eE eD n n e E D e n
x x

 
 

     
 

  

2.10  Hall effect 

“When the conductor carrying a current (I) is placed in a perpendicular magnetic field (B), a 

potential difference is developed inside the conductor in a direction normal to the directions 

of both the current and magnetic field” 

This phenomenon is known as Hall Effect and the corresponding voltage thus generated is 

called Hall voltage 

Explanation 

Consider an external field applied along the X-axis of the specimen. Assuming that the material 

is n-type semiconductor, the current flow consists mainly of electrons moving from right to 

left, corresponding to the conventional current direction. 

When this specimen is placed in a magnetic field ‘B’ and if ‘v’ is the velocity of the electrons 

perpendicular to the magnetic field then each one of them will a experience a downward force 

of magnitude Bev 

This downward force (Lorentz Force FL) due to magnetic field causes the electrons to be 

deflected in the downward direction and hence there is an accumulation of negative charges on  

the bottom face of the slab. This causes the bottom face of the slab to be more negative with 

respect to the top face and a potential difference is established from top to bottom of the 

specimen. This potential difference causes a field EH called Hall field in negative y direction. 

There is a force eEH acting on the electron in the upward direction due to this field. 

Theory of Hall Effect 

At equilibrium, the downward force Bev will balance the upward force eEH 

Bev = eEH           (1) 

In a uniform sample, the electric current density (J) is related to the drift velocity as  

J = -neV 

Where n is the concentration of electrons. 

ne

J
V


            (2) 

Substituting equation (2) in (1),  

ne

BJ
E

H


            (3) 

This can be written as EH = BJRH        (4) 

Where RH = - 1 / ne is called Hall coefficient 

The negative sign indicates that the developed field is in the negative y direction. 

                              Y 

 

Current             VH 

           X 

                     z 

Magnetic field 
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IIIrly, the Hall coefficient for p – type semiconductor is RH = 1 / p e. 

Where p is the concentration of holes 

Determination of Hall coefficient 

The hall field per unit current density per unit magnetic induction is defined as hall 

coefficient. 

If t is the thickness of the sample and VH is the hall voltage, then VH = EH t              (5) 

Where EH is hall field. 

From equation (4), we get EH = RH Jx B        

Substituting the value of (5) in above equation, we get VH = RH  Jx B t   (6) 

Now the current density Jx can be written as 
bt

I
J x

x       (7) 

Where ‘b ’ is the width and bt is the area of cross section of the sample 

Substituting equation (7) in equation (6), we get      
bt

BtIR
V XH

H    

          
b

BIR
V XH

H     (8) 

      (or) 
BI

bV
R

X

H
H                 (9) 

For an n – type semiconductor 
BI

bV
R

X

H
H


                             (10) 

Mobility of charge carriers 

We know that hall coefficient 
ne

RH

1
  

This expression is correct only when the charge carriers is free from any attractive force in 

energy band and moves with constant drift velocity. But this is not true in the case of 

semiconductors. 

Considering the average speed, it is shown that 
ne

RH

18.1
   for electrons and 

pe
RH

18.1
  

for holes. 

We know that the electrical conductivity and mobility is related by σ = n e μe 

(or) 
ne

e


   & hence 

ne

e

e


   and hence 

18.1

eH

e

R 



                            (11) 

Similarly 
18.1

hH

h

R 



                   (12) 

(top)   +++++ 

(n-Type) 

--------------(bottom) 

(top)   --------- 

(p-Type) 

++++++++(bottom) 
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Experimental Determination of Hall Coefficient: 

The experimental setup for the measurement of Hall voltage is shown in figure. 

A semiconducting material is taken in the form of a rectangular slab of thickness ‘t’ and breadth 

‘b’. A suitable current Ix ampere is allowed to pass through this sample along the X axis by 

connecting it to battery 

The sample is placed between the poles pieces of an electromagnet such that the applied 

magnetic field coincides with the z – axis. 

Hall voltage (VH) which is developed in the sample is measured by fixing two probes at the 

centers of the bottom and top faces of the sample. 

By measuring Hall voltage, Hall coefficient is calculated from the formula
BI

bV
R

X

H

H




  

Applications 

(i) The sign of the hall coefficient is used to determine whether a give semiconductor is n – 

type or p – type 

(ii) Once Hall coefficient RH is measured, the carrier concentration can be determined from  

n = 1 /e RH 

(iii) The mobility of charge carriers can be obtained if conductivity is known. μe = σeRH 

(iv)  Hall voltage VH for a given current is proportional to B. Hence measurement of VH 

measures the magnetic field B. 

(v) This instrument gives an output proportional to the product of two signals. Thus if 

current I is made proportional to one input and if B is made proportional to the other 

input, then the Hall voltage VH is proportional to the product of the two inputs. 

                                               Magnetic field   

                                                                                                                          Hall voltage(VH)        

                                                            Current                                                                                       

 

         

       +   - Bt          

 

 

 

2.11  Hall devices 
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(a) Gauss meter 

The hall voltage, we have H Z X
H

R B I
V

b
 . In this,  H zV B  for a given hall element; RH an b 

are constant. The current I through Hall element is also kept constant. This principle is used 

in Gauss meter. It is used for measuring magnetic field. The variation of Hall voltage with 

magnetic field is shown in figure. The voltmeter which is used to measure VH  can be directly 

calibrated in terms of Gauss. The graph can be also used to measure any unknown magnetic 

fields. 

 

  

 

 

 

                                      +     -               RH 

(b) Electronic Multipliers 

From Hall effect, we have 1H Z
H

R B I
V

b
 . Since RH an b are constant for an element 

1H zV B I  

But the magnetic field BZ is proportional to current (I2) through the coil. 

i.e., 2HV I  

1 2HV I I    

VH is a measure of the product of two currents. This is the basic principle used in analog 

electronic multipliers. The figure shows the circuit diagram for electronic multiplier. 

 

  I2 

 

 

 

                                                                                     I1 

 

(c) Electronic Wattmeter 

N 

S 

V

H 

V

H 
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Hall effect is used to measure electrical power dissipate in a load. The instrument used to 

measure the power in a circuit using Hall effect principle is known as Hall effect – 

Wattmeter. 

S is Hall element sample. It is place in a magnetic field Bz produce by the load current IL 

passing through the coils CC as shown in figure. The voltage cross the load VL drives the 

current Iy = VL / R through the sample. R is a series resistance which is >> than the resistance 

of the sample and that of the load. Also, Iy << IL.. If b is the breadth of the sample, then the 

measured Hall voltage    
H Z y

H

R B I
V

b
 . Since VH and b are constant, H z yV B I  

Since z LB I  and y LI V  & hence H L LV I V  

This is the electric power dissipated by the load. The voltmeter that measures VH can be 

calibrate to read power directly. 

                           VL 

                           IL                                                                                                                           IL  

 

 

 

                               VL                R                   Iy = VL / R       

 

 

2.12 Schottky diode 

It is the junction formed between a metal and n – type semiconductor. When the metal has a 

higher work function than that of n – type semiconductor then the junction formed is called 

Schottky diode. The Fermi level of the semiconductor is higher (since its work function is 

lower) than the metal. Figure shows Schottky diode and its circuit symbol. 

 

  

The electrons in the conduction level of the semiconductor move to the empty energy states 

above the fermi level of the metal. This leaves a positive charge on the semiconductor side and 

a negative charge (due to the excess electrons) on the metal sie as shown in figure. This leads 

to a contact potential.   

When a Schottky junction is formed between metal and semiconductor, fermi level lines up. 

Also a positive potential is formed on the semiconductor side. The formation of a depletion 

region of width WD within the semiconductor is shown in figure. Because the depletion region 

extends within a certain depth in the semiconductor, there is bending of the energy bands on 

the semiconductor side. Band bend up in the direction of the electric field produced in depletion 

    S C 

Bz 

C 
V

Metal n– type semiconductor 
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                      - 
                      - 
                      - 
                      - 
                      - 

 

region. There is a built in potential Vo in the Schottky junction. From the figure this is given by 

the difference in work functions eV0 = φm – φsemi 

V0 

                                             

 

 

                  

                       Metal     Depletion region  Semiconductor 

 

Energy band diagram                                                                      I (mA) 

                                  WB 

                                         eV0 = Φm – Φsemi                                                       

              

                  ΦB                             CB     Ec    

   EFm            EFs                        -V         μA                         V 

 

                                                                Ev 

                                               VB 

Working 

The behaviour of Schottky diode is further studied by forward and reverse bias. 

(a) Forward Bias 

In this bias, metal is connected to positive terminal and n – type semiconductor is connected to 

negative terminal of the battery. In the forward biased Schottky junction, the external potential 

opposes the in- built potential. The electrons injected from the external circuit into the n – type 

semiconductor have a lower barrier to overcome before reaching the metal. This leads to a 

current in the circuit which increases with increasing external potential. 

(b) Reverse Bias 

In reverse bias, metal is connected to negative terminal and n – type semiconductor to positive 

terminal of the battery. In the case of reverse bias, the external potential is applied in the same 

direction as the junction potential. This increases the width of depletion region further and hence 

there is no flow of electron from semiconductor to metal. So Schottky junction acts as rectifier. 

i.e., it conducts in forward bias but not in reverse bias. 

V – I  Characteristics 

The V – I characteristics of the junction is shown in figure. There is an exponential increase in 

current in the forward bias while there is a very small current in reverse bias. 
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Advantages 

It has very low capacitance 

It will immediately switch from ON to OFF state (fast recovery time) 

Applying a small voltage is enough to produce large current  

It has high efficiency 

It operates at high frequencies 

It produces less noise. 

 

 

2.13 Ohmic contact 

 

An ohmic contact is a type of metal semiconductor junction. It is formed by a contact of a metal 

with a heavily doped semiconductor. When the semiconductor has a higher work function than 

that of metal, then the junction formed is called the ohmic junction. 

Here, the current is conducted equally in both directions and there is a very little voltage drop 

across the junction. Before contact, fermi levels of the metal and semiconductor are at different 

positions as shown in figure. 

Working 

After contact, the ohmic junction is shown in figure. At equilibrium, the electrons move from 

the metal to the empty states in the conduction band of semiconductor. Thus, there is an 

accumulation region near the interface (on the semiconductor side). The accumulation region 

has higher conductivity than the bulk semiconductor due to this higher concentration of 

electrons. Thus, a ohmic contact behaves as a resistor conducting in both forward and reverse 

bias. The resistivity is determined by the bulk resistivity of the semiconductor. 

V – I Characteristics 

The V-I characteristics of the ohmic contact is shown in figure. The current is directly 

proportional to the potential across the junction and it is symmetric about the origin, as shown 

in figure. Thus, ohmic contacts are non-rectifying and show negligible voltage drop and 

resistance irrespective of the direction and magnitude of current. 
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                     Negligible voltage drop           I 

 

 

                                                                                            V 

 

 

Applications 

The use of ohmic contacts is to connect one semiconductor device to another, an IC, or to 

connect an IC to its external terminals. 

 


