
  
 

DR. R. RAJESH / A.P / PHY/VCET 1 

 

 

 

5.1. Introduction 

A nanometer is one billionth (1/109) of a meter. For comparison, thickness of a single human 

hair is about 80,000 nm (80 m), a red blood cell is approximately 7000 nm (7 m) wide and 

a water molecule is almost 0.3nm across. Scientist and engineers are now-a-days interested in 

Nanoscale which is from 1 nm to 100 nm. At Nanoscale, the properties of materials are very 

different from those at larger scale. Therefore, the nano-world is in between quantum world 

and macro world. 

Nanoscience 

It is concerned with the study of phenomena and application of structures, devices and systems 

by controlling shape and size at the nanometer scale. Nanotechnology means making use of 

the unique physical properties of atoms, molecules and other materials measuring roughly 1 to 

100 nanometre. The word “nano” comes from nanos, a Greek word meaning drawf. Presently, 

we are making devices made of nanoelectronic devices. The microelectronics industry was 

born out of the invention of the bipolar transistor in 1947 and by the invention of the integrated 

circuit (IC) in 1958. Gordon Moore (INTEL founder) observed that the number of transistor 

per square inch on IC chip roughly doubled by every 18 to 24 months. This general rule of 

thumb is now called as “Moore’s law”. In 1960, the minimum size of a transistor was 

approximately 100 nm. At present, manufacturing technology is at transistor size of 22 nm. 

Because of the diminishing feature size of transistors and other components, we can say that 

the electrons industry is already doing “nanotechnology”. 

Nanomaterials 

Definition 

Nanophase materials are newly developed materials with grain size at the nanometer range   

(10-9m). ie., in the order of 1 -100 nm. The particle size in a nanomaterial is 1 – 100 nm. They 

are simply called nanomaterials. 

Different forms of Nanomaterials 

Nanostructured material 

The structures whose characteristic variations in design length is at the Nanoscale 

Nanoparticles 

The particle size is in the order of 10-9m  are called nanoparticles 

Nano dots 

Nanoparticles which consist of homogeneous material, especially those that are almost 

spherical or cubical in shape 

Nano rods 

5.   Nano Devices 
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Nanostructures which are shaped like long sticks or rods with diameter in Nanoscale and a 

length  very much longer. 

Nanotubes 

Nanotubes are Nanoscale materials that has a tube like (hollow cylinder) structure. 

Nanowires 

Nanowires are solid rod like material with diameter of few nanometers or less 

Fullerenes 

A form of carbon having a large molecule consisting of an empty cage of 60 or more carbon 

atoms. 

Nanocomposites 

Composite structures whose characteristics dimensions are foun at Nanoscale 

Cluster 

A collection of units (atoms or reactive molecules) upto few tens of units. 

Colloids 

A stable liquid phase containing particles in the 1 – 1000 nm range. 

Nanoelectronics 

It refers to the use of nanotechnology in electronic components, especially transistors. It often 

refers to transistor devices that are so small that interatomic interactions and quantum 

mechanical properties need to be studied extensively. Besides, being small and allowing more 

transistors to be packed into a single chip, the uniform and symmetrical structure of nanotubes 

allows a higher electron mobility, a symmetrical electron/hole characteristic. 

Need for Nanotechnology in electronics 

Today microelectronics are used to solve most of the problems. The two exceptional 

disadvantages of microelectronics are: Physical size, increasing cost of fabrication of ICs. To 

overcome these disadvantages, nanotechnology is used. 

Advantages of using Nanotechnology in Electronics 

Increasing the density of memory chips. 

Decreasing the weight and thickness of the screens 

Nanolithography is used for fabrication of chips. 

Reducing the size of transistors used in integrated circuits. 

Improving display screen on electronic devices. 

Reducing power consumption. 

5.2. Electron density in bulk material 
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The bulk material is a collection of atoms having properties that are from individual atoms. 

The nanomaterials gives unique electronic properties.one of the mayor difference in 

nanomaterials with respect to bulk materials is the number of available energy states. In a bulk 

material, the states within each energy sublevel are so close that they blend into a band. 

The total number of electron states N with energies up to E, can be determined based on the 

equation  
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Here, we represent the volume as V, m is the mass of an electron an h is the Planck’s 

constant. 

The number of energy states per unit volume is given by 
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Density of states is defined as number of available electron energy states per unit volume, 

per unit energy i.e., Z(E) = dn / dE                              (3) 

Hence equation (2) becomes, 
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From equation (4), the density of states for a bulk material is directly proportional to square 

root of energy 

i.e., Z(E) α √E                    (5) 

The relevant application of density of states is that it provides information about 

nanomaterials. 

Here, the fermi function gives the probability of occupation by the free electrons in a given 

energy state. 

i.e., 
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Then, the number of free electrons per unit volume is 
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Put F(E) = 1 at T = 0K, then 
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5.3. Size dependence of Fermi energy 

In terms of the distribution of energy, solid have thick energy bands, whereas atoms have thin, 

discrete energy states. Hence to make a solid behave electronically more like an atom, we need 

to make it about the same size as an atom. 
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Hence rearranging equation (7) , we get 
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In the above equation, ‘n’ is the only variable. 

Equation (8) suggests that the fermi energy of a conductor depends on the number of free 

electrons ‘N’ per unit volume ‘V’   
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Since the electron density is a property of the material, the fermi energy does not vary with 

material’s size. EF is same for a particle or for a brick of copper. Hence the energy state will 

have the same range for small volume and large volume of atoms. But for small volume of 

atoms we get larger spacing between states. This is applicable to semiconductors and insulators. 

Let us consider that all states up to EF(0) are occupied by a total of free electrons (N).
(0)FE

E
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From equation (9) & (10),  
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Thus, the spacing between energy states is inversely proportional to the volume of the solid. 

The energy sublevel and the spacing between energy states within it will depend on the number 

of atoms as shown in figure. At one point, we know that an energy sublevel must be divided as 

many times as there are atoms in a solid, which eventually results too many splits to 

differentiate. Hence, we just refer to each sublevel as a solid energy band. On the other hand, 

a single atom in the sublevel contain only one discrete energy state. If we reduce the volume 

of s solid, the tiny piece of material behaves electronically like an artificial atom. 

5.4. Quantum confinement 

Definition 

It is a process of reduction of the size of the solid such that the energy levels inside becomes 

discrete 

Explanation 

When the size of a nanocrystal becomes smaller than the deBroglie wavelength, electrons an 

holes gets spatially confined, electrical dipoles gets generated, the discrete energy levels are 

formed. As the size of the material decreases, the energy separation between adjacent levels 

increases. The density of states of nanocrystals is positioned in between discrete (as that of 

atoms and molecules) and continuous (as in crystals). 

Quantum size effect is most significant for semiconductor nanoparticles. In semiconductors, 

the bandgap energy is of the order of few electron volts and increases with a decrease in particle 

size. When photons of light fall in a semiconductor, only those photons with energy are 

absorbed and a sudden rise in absorption is observed when the photon energy is equal to the 

bandgap. 

As the size of the particle decreases, absorption shifts towards the shorter wavelength (blue 

shifts) indicating an increase in the bandgap energy .A change in absorption causes a change 

in the colour of the semiconductor nanoparticle. 
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For example, bulk cadmium sulphide is orange in colour and has a bandgap of 2.42eV. It 

becomes yellow and then ultimately white as its particle size decreases and the bandgap 

increases. 

 

 

5.5. Quantum structures 

Definition 

When a bulk material is reduced in its size, atleast one of its dimension, in the order of few 

nanometers, then the structure is known as quantum structure. 

Explanation 

The volume of a box can be reduced by shortening its length, width or, and height. The same 

is true for the region occupied be the electrons in a solid. There are three dimensions to confine 

the bulk material. The quantum confinement needs confining at least one of these dimensions 

to less than 100 nanometers or even just a few nanometers. 

The more the dimensions are confined, the more the density of states function looks like that 

of an atom. This progressive discretization gives new ways to understand real atoms, behaviour 

of electrons and developing quantum confined electronic devices. 

A structure in which the motion of the electrons or holes are confined in one or more directions 

by potential barriers is called quantum confined structure. 

The quantum confined structure is classified into three types based on the confinement 

directions. They are 

(i) Quantum well 

(ii) Quantum wire 

(iii) Quantum dot 
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The density of states of a bulk material is given by 

 
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Where Ec is the bottom of conduction band energy & m* is the effect mass of the electron.  

 

Quantum well (2D) 

The quantum well can be displayed with dimensions of length a, where the electrons of 

effective mass are confined in the well as shown in fig.                     ny 

                              e-                                                                               E+dE    E             n    n+dn 

                                                                                                              o                    nx 

                                                                                                             

0                    a 

The two dimensional density of states is the number of states per unit area and unit energy. 

Consider the electron in a two dimensional bounded region of space. We want to find how 

many quantum states lie within a particular energy, say, between E and E+dE as shown in 

Figure. 

The reduced phase space now consists only the x- y plane and nx and ny coordinates. 

In 2D space, n2 = nx
2 + ny

2 

 

Derivation 

The number of available states within a circle of radius ‘n’ is given by 21

4
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Here only one quarter of circle will have positive integer values 

The number of states within a circle of radius n+dn is given by  
21

4
n dn   

The number of available energy states lying in an energy interval E and E+dE 
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 As dn2 is very small, we can neglect dn2. Therefore we get, 
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Substitute the value of equation (3) and (4) in equation (1), we get 
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m* is the effective mass in the quantum well   
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Put a2 = A area of circle 

According to Pauli’s exclusion principle each energy level can occupy two electrons of 

opposite spin 

i.e., 
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Number of quantum states per unit area and unit energy is 
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The density of states in two dimensional is given by 
*
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Where E0 is the ground state of quantum well 
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Where En are the energies of quantized states and ( )nE E  is step function. 

From equation (7), the density of states in two dimension is constant with respect to the 

energy. 
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Density of states in quantum wire (1D) 

Consider the one dimensional system, the quantum wire in which only one direction of 

motion is allowed. (eg. Along x – direction). 

In one dimension, such as for a quantum wire, the density of states is defined as the number 

of available states per unit length per unit energy around an energy E. The electron inside the 

wire are confined in a one dimensional infinite potential well with zero potential inside the 

wire and infinite potential outside the wire. 

At x = 0; V(x) = 0 for an electron inside the wire 

At x = a; V(x) = α for an electron outside the wire 

The reduced phase space now consists only the x plane and nx coordinates are shown in 

figure. 

In one dimensional space n2 = nx
2 

The number of available energy states lying in an interval of length is 

Z’(E)dE = n +dn –n = dn                                                                                     (1) 

Substitute the value of dn from equation (4), we get 
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According to Pauli’s exclusion principle, two electrons of opposite spin can occupy each 

energy state. 
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Number of quantum states per unit length and unit energy is 

1/2
*

1/2

2

'( ) 8Z E dE m
E

adE h


 

  
  

 



  
 

DR. R. RAJESH / A.P / PHY/VCET 9 

 

(or) 

1/2
*

1/2

2 2

8
'( )

4

m
Z E E




 

  
  

 = 
1/2*

1 1/22
'( ) D m

Z E E



 

  
  

                                                            (3)  

If the electron has potential energy E0 we have 
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From equation (4) the density of states in one dimensional system has a functional 

dependence on energy Z(E)1D α E-1/2  

For more than one quantized state, the one dimensional density of states is given by  
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Where En are the energies of the quantized states of the wire and ( )nE E  is the step 

function. The density of states in quasi-continum (or) quantum wire is shown in figure. The 

discontinuities in the density of states are known as Van Hove Singularities   

Density of states in Quantum dot (0D) 

In a zero dimensional system, the density of states are truly discrete and they don’t form a 

quasi continum. 

In zero dimensional system (quantum dot), the electron is confined in all three spatial 

dimensions and hence to motion of electron is possible. Each quantum state of a zero 

dimensional system can therefore be occupied by only two electrons. So the density of states 

for a quantum dot is merely a delta function. 

0
0( ) 2 ( )DZ E E E                                                                                               (6) 

Here, the factor 2 accounts for spin. For more than one quantum state, the density of states is 

given by 0
0( ) 2 ( )D

n

Z E E E   
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5.6. Bandgap of Nanomaterials 

The electronic properties of metals and semiconductors are determined by their electronic band 

structure. The band structure changes with particle size. Molecular orbitals get converted into 

delocalized band states as shown in figure 

  

 

 

 

 

 

 

         Atoms               Molecule           Nanoparticle    Semiconductor           Metal 

The band structure of nanocrystals lies between the discrete density of states as in atoms and 

molecules continuous band as in crystals. As the size of the material decreases, the energy 

separation between the adjacent levels increases. This size quantization effect is responsible 

for the transition of electronic states from a bulk material or semiconductor to nanoparticles. 

The particles that show this size quantization effect are called Q-particles or quantum dots.  

In case of the particle size being less than the deBroglie wavelength, charge carriers can be 

quantum-mechanically understood as particles in a box an the size of the box can provide the 

dimensions of the particle. With a decrease in particle size of metals, the quasi-continuous 

density of states splits into discrete electronic levels with an increase in spacing between these 

levels.  

Quantum size effect is most significant for semiconductor nanoparticles. In semiconductor, a 

bandgap already exists in the bulk state. It also increases and the energy bands gradually 

convert into discrete molecular electronic levels with a decrease in particle size. As the size of 

metal nanoparticles decreases, they tend to lose their metallic character and become 

semiconductor. In metals, the quantum size effect exists but it can be seen only in particles 

smaller than 2nm where localization of energy levels can be observed when the spacing 

between the levels exceeds thermal energy (about 26 MeV). 

5.7. Tunneling 

The phenomenon of penetration of charge carriers directly through the potential barrier, instead 

of climbing on it is called tunnelling. 

 

 

Conduction 

Band 

Valence 

Band 

 

Conduction 

Band 

 

Valence 

Band 



  
 

DR. R. RAJESH / A.P / PHY/VCET 11 

 

Single electron phenomena 

Transistors are what computers used to compute-tiny switches turning on and off, transferring 

and amplifying signals, making logic decisions. Today, microchips have over a billion 

transistors, each one turning on and off a billion times every second. These chips require 

manufacturing processes with roughly 100-nm resolution. And every year this resolution drops, 

enabling even smaller transistors, so that even more of them can be squeezed into the same 

amount of space. Rather than moving torrents of electrons through transistors, it may very well 

be practical and necessary to move electrons one at a time.  We can use transistors to make 

sensitive amplifiers, electrometers, switches, oscillators, and other digital electronic circuits all 

of which operate using single electrons 

Rules for single electron phenomena to occur 

Tunnelling is the way electrons cross both the physical barriers and the energy barriers 

separating a quantum dot from the bulk material that surrounds it. If any electron on one side 

of the barrier could just tunnel across it, there would not be any isolation. The dot would not 

be a quantum dot because it would still essentially be part of the bulk. 

So we need to be able to control the addition and subtraction of electrons. We can do 

this with voltage biases that force the electrons around. There are two rules for preventing 

electrons from tunnelling back and forth from a quantum dot. 

(i) Coulomb blockade effect 

(ii) Overcoming uncertainity 

Rule1: Coulomb Blockade effect 

A quantum dot has a capacitance, Cdot, a measure of how much electric charge it can store            

Cdot = G ɛ d            (1) 

Here, ε is the permittivity of the material surrounding the dot, d is the diameter of the dot, 

and G is a geometrical term (if the quantum dot is a disk, G = 4; if it is a spherical particle, 

G = 2π). An object isolated in space can store charge on its own and therefore can have a 

capacitance. 

The energy needed to add one negatively charged electron to the dot is known as the charging 

energy,  
2

2
C

dot

e
E

C
                       (2) 

We know that the coulomb blockade can prevent unwanted tunnelling. Hence we can keep the 

quantum dot isolated, the condition for this is given by C BE K T                                           (3) 

Rule2: Overcoming uncertainity 

The uncertainty in the energy of a system is inversely proportional to how much time we have 

to measure it. Specifically, the energy uncertainty, ΔE, adheres to this relationship 

h
E

t
 


                       (4) 



  
 

DR. R. RAJESH / A.P / PHY/VCET 12 

 

Here, h is Planck’s constant and Δt is the measurement time. Since it is a tiny capacitor, the 

time we use for Δt is the capacitor’s time constant (the characteristic time a capacitor takes to 

acquire most of its charge). The time constant of a capacitor is RC, where R is the resistance 

and C is the capacitance. In our case, the resistance is the tunnelling resistance, Rt, and the 

capacitance is Cdot. This gives us t dott R C                      (5) 

Our goal is to keep electrons from tunnelling freely back and forth to and from the dot. To 

ensure this, the uncertainty of the charging energy must be less than the charging energy itself. 

For maintaining electron isolation in quantum dot, we need c cE E                                       (6) 

Substituting  equation (2), (4) and (5) in (6), we get 
2

2t dot dot

h e

R C C
                            (7) 

In otherwords, 
2t

h
R

e
           (8) 

Meeting this criterion is often as simple as making sure the insulating material surrounding the 

dot is thick enough. These two rules help in building a single-electron transistor (SET) 

5.8. Single electron transistor (SET) 

Principle 

A transistor with three terminal switching device made from a quantum dot that controls 

the current from source to rain one electron at a time is called single electron transistor 

 

Construction 

The single electron transistor (SET) is built like a conventional Field Emitting Transistor 

(FET). It has tunnelling junctions in place of pn – junctions and quantum dot in place of the 

channel region of the FET. To control tunnelling, a voltage bias to the gate electrode is applied. 

A separate voltage bias is applied between source and drain electrodes for the current direction. 

For current to flow, gate bias voltage must be large enough to overcome the coulomb blockade 

energy. 

Working 

1. The purpose of SET is to individually control the tunnelling of electrons into an out of the 

quantum dot. To do this, we must first stop random tunnelling by choosing the right circuit 

geometry and materials. If an electron comes or goes from the dot. It will on purpose 

2. To control tunnelling, we apply a voltage bias to the gate electrode. There is also a voltage 

difference between the source and the drain that indicates the direction of current. Here, we 

can say that current and electron flow in the same direction and we will consider the 

electrode from which the electrons originate.  

3. This is similar to the working of FET, where the gate voltage creates an electric field that 

alters the conductivity of the semiconducting channel below it, enabling current to flow 

from source to drain. 

4. Applying a voltage to the gate in an SET creates an electric field and change the potential 

energy of the dot with respect to the source and drain. This gate voltage controlled potential 
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difference can make electrons in the source attracted to the dot and simultaneously electrons 

in the dot attracted to the drain. 

5. For current to flow, this potential difference must be atleast large enough to overcome the 

energy of the coulomb blockade. 

The energy “E” needed to move a charge e across a potential difference V is given by E=Ve 

So, the voltage that will move an electron onto or off the quantum dot is given by 

cE
V

e
   (or) 

2

2 2dot dot

e e
V

C C

e

            (1) 

With this voltage applied to quantum dot, an electron can tunnel through coulomb blockade of 

the quantum dot.  

Working for single electron transistor in nutshell 

A single electron transistor is shown in figure. As opposed to the semiconductor channel in a 

field effect transistor, the SET has an electrically isolated quantum dot located between the 

source and drain. 

1. The SET is OFF mode. The corresponding potential energy diagram shows that it is not 

energetically favourable for electrons in the source to tunnel to the dot as shown in figure. 

2. The SET is ON mode. At the lowest setting electrons tunnel one at a time, via the dot, from 

the source to the drain as shown in figure. 

3. This is made possible by first applying the proper gate voltage, Vgate = e/2Cdot, so that the 

potential energy of the dot is made low enough to encourage an electron to tunnel through 

the coulomb blockade energy barrier to the quantum dot. 

4. Once the electron is on it, the dots potential energy rises as shown in figure  

5. The electron then tunnels through the coulomb blockade on the other side to reach the lower 

potential energy at the drain as shown in figure. 

6. With the dot empty and the potential lower again the process repeats as shown in figure. 

 Advantages 

1. The fast information transfer velocity between cells is carried out via electrostatic 

interactions only. 

2. No wire is needed between arrays. The size of each cell can be can be as small as 2.5nm. 

This made them suitable for high density memory. 

3. This can be used for the next generation quantum computer. 

Limitations 

1. In order to operate SET circuit at room temperature, the size of the quantum dot should 

be smaller than 10nm 

2. It is very hard to fabricate by traditional optical lithography and semiconductor 

processes 

3. The method must be developed for connecting the individual structures into logic 

circuits and these circuits must be arranged into larger 2D patterns. 
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Applications 

1. SET are used in sensor and digital electronic circuits 

2. Variety of digital logic functions, including AND or NOR gates, is obtained based on 

SET operating at room temperature. 

3. It is used for mass storage 

4. It is used in highly sensitive electrometer. 

5. SET can be used as a temperature probe, particularly in the range of very low 

temperatures. 

6. SET is a suitable measurement setup for single electron spectroscopy. 

7. It is used for the fabrication of  homo-dyn receiver operating at frequencies between 10 

and 300 MHz. 
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5.9. Quantum dot laser 

Principle 

A quantum dot laser is a semiconductor laser that uses quantum dots as the active medium 

in its light emitting region. 

Construction 

Figure shows a quantum dot near infrared laser diode grown on an n doped GaAs substrate. 

The top p metal layer has a GaAs contact layer. Immediately below it there are a pair of 2μm 

thick Al0.85Ga0.15As cladding bounding layers that surrounds a 190 nm thick waveguide 

made of Al0.05Ga0.95As in between p metal and n substrate. The front view of quantum laser 

diode is shown in figure. Here the waveguide plays the role of conducting the emitted light 

to the exit ports at the edges of the structure. 

The waveguide is a 30 nm thick GaAs region, an centred in this region are 12 monolayers 

of In0.5Ga0.5As quantum dots with a density of 1.5 X 10-10 cm2. The details of the wavelength 

region is drawn below 

     Working 

1. The electron and hole recombination causes the emission of laser light. 

2. By varying the length Lc and width W the laser light with particular wavelength will 

be emitted. 

3. A particular wavelength of 1.32 μm which is near infrared region can be produced for 

a current setting just above the 4.1mA threshold value, labelled point a as shown in 

figure. 

4. The faces of the layer were coated with high reflected material where the light is 

reflected back and forth to increase the stimulated emission and in turn the laser 

emission is enhanced. 
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5.10. Ballistic transport 

Definition 

When the mean free path of the electron is longer than the dimension of the medium through 

which the electron travels is called ballistic transport 

Explanation 

When the length L of the conductor becomes much smaller than the mean free path Lm the 

transport is termed ballistic meaning that the electrons do not scatter during the time it takes 

to travel through the conductor. 

For example, ballistic transport can be observed in a metal nano wire. This is because the 

wire is of the size of a nanometer and the mean free path can be longer than in a metal.  

Condition for ballistic transport 

The mean free path can be increased by reducing the number of impurities in a crystal 

or by lowering its temperature. 

i.e., L<<Lm and L<<Lφ 

where L length of the conductor, Lm mean free path, Lφ length over which an electron 

can travel before having an elastic collision. This is also called phase coherence length 

since it is the length over which an electron wave function retains its coherence. For 

L<<Lm and L<<Lφ, we have ballistic transport. Ballistic transport occurs over very 

small length scales, and is obviously coherent. 

The electron does not hit anything as it travels through the material and therefore there 

is no momentum or phase relaxation. Thus in ballistic material, the electron wave 

function can be obtained from schrodinger’s equation. 
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Application 

It is used in ultra-short channel semiconducting FETs or carbon nanotube transistors.  

5.11. Quantum conductance and resistance 

The quantum conductance is the quantised unit of electrical conductance denoted 

by Go            
2

5
0

2
7.748 10

e
G mho

h

     

The reciprocal of the quantum conductance is quantum resistance denoted by R0 

0 2
12.9

2

h
R k

e
    

Derivation 

A one dimensional quantum wire connects adiabatically two reservoirs with chemical potential 

μ1 and μ2. The connections are assumed to be non-reflecting. 

Reservoirs with chemical potential μ1 and μ2 

It is also assumed that the wire is sufficiently narrow so that only the lowest transverse mode 

in the wire is below the fermi energy (EF) 

The current density is given by J = -nevd                                                                                     (1) 

The density of electrons is determined by  
1 1 1

2 2 2

dn dn
dE dE

n dn dE dE

  

  

       

 1 2

dn
n

dE
                 

   

                   (2) 

Substituting equation (2) in (1), we get  1 2 d

dn
J eV

dE
      

       (3) 

where dn/dE is the density of states. 

We know that E = N h ν          (4)  

Where N is the number of electrons 

We know that 
. .N No ofelectrons No ofelectrons N

n
V volume length area A l

   
 

  

Therefore N = nAl           (5) 

Substituting equation (5) in (4). We get  

E = n h ν A l 

Differentiating we get  
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dE = dn h ν A l 

1dn

dE h Al
               (6) 

According to spin degeneracy, multiply equation (6) by two, we get 

2dn

dE h Al
             (7) 

If V is the voltage between two reservoirs, then we can write 

1 2 eV                 (8) 

Substituting equation (7) and (8) in equation (3) we get 

2
dJ eVeV

h Al
   

(or) 22

d

J Al
e V

V h


  

(or) 22

d

I Al
e V

AV h


  =  22

d

I l
e V

V h


       (9) 

We know that velocity = distance / time an frequency = 1/ time 

d

l
V

t
             (10) 

and  
1

V
t

            (11) 

Substitute (10) and (11) in (9), we get 

 22

( / )

Il
e V

t l t h
  

(or) 
22I e

V h
  

(or) 
2

0

1 2e

R h
           (12) 

Therefore equation (13) can also be rewritten as 

2

0
0

1 2e
G

R h
            (13) 

Therefore quantum conductance 
2

0
0

1 2e
G

R h
   = 7.748 X 10-5 siemens (or) mho     (14) 

And quantum resistance 0 2
12.9

2

h
R k

e
                                                                                (15) 

Here G0 is a fundamental unit 



  
 

DR. R. RAJESH / A.P / PHY/VCET 19 

 

If there are N electronic channels, then equation (14) becomes 

2

0

2e
G N

h
  called Landauer formula       (16) 

i.e., G = G0N 

Similarly 0
0 2

1

2

Rh
R

N Ne
           (17) 

As the number of electronic channels increases, conductance increases and resistance 

decreases. The classical theory also predicts this behaviour, although the quantum theory shows 

that this happen in discrete steps, as the number of electron channel increases. 

As N gets very large, the electron channels essentially form a continum and the quantum 

theory tends towards the classical limit. 

5.12. Metallic Nanowire 

Consider a circular cross section wire which has a radius a and length L . Assume that L is 

very large relative to its mean free path. 

Let us assume a copper wire having radius a = 10 mm , R = 5.395 X 10-5 ohms / meter and σ 

=5.9 X 107 S/m. we need 18357m for 1Ω  resistance to be maintained in the given radius of 

the wire. For a = 10 μm, R = 53.05Ω /m amounting to 1 Ω in only 1.85 cm. If  a = 10 nm then 

the resistance is huge. 

Here the radius of the wire having radius on the order of its mean free path or less will have 

different conductance value compare to the bulk scale. For example, copper has a mean free 

path of approximately 40 nm and hence radius dependence effects usually occurs when the 

radius is double this value (80 – 100 nm). 

A 1 -20nm radius range, the conductivity values changes from the bulk value and decreases 

as the radius a decreases. This is due to scattering effect from the wire surface, grain 

boundaries, defect free metals at small scales. 

A relatively simple approximation for the resistivity of rectangular cross section of wires is 

0
2 3

1 3 1
(1 )

81 1
3 ln 1

3 2

mLAR
C P

AR W
 


 



 
 

 
    

            

      (1) 

Where 
1

m c

c

L R

d R
  


  

Where ρ0 – bulk resistivity 

            W – wire width 

          AR – aspect ratio (wire height / wire width) 

            d – average grain size 
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 P – specularity parameter  

 Rc – grain boundary reflection coefficient 

 C – constant 

Here the first term is related to grain boundary scattering and the second term wire surface 

scattering. Both P and RC can take values between 0 and 1. The experimental results are      P 

= 0.3 - 0.5 and Rc = 0.2 - 0.3. 

The proceeding model may work down to wire cross sectional dimensions on the order of   5 

– 10 nanometres. Below which a quantum wire model that accounts for transverse quantization 

would be necessary. However as complicated as surface and grain boundary scattering are, 

other factors also determine the conductivity of nanowire 

5.13. Carbon Nanotubes 

The hexagonal lattice of carbon is simply graphite. A single layer of graphite is called graphene. 

CNT consists of a graphene layer rolled up into a cylindrical shape like a single molecule where 

each molecule nanotube is made up of a hexagonal network of covalently bonded carbon atoms 

Eg: fullerene. In some cases, the hexagon are arranged in a spiral form, the layer appears like 

a net having a large hexagonal mesh. The carbon nanotubes are hollow cylinders of extremely 

thin diameter, 10,000 times smaller than a human hair.  

Structures of CNT 

The CNTs have many structures on the basis of their length, type of spiral and number of layers. 

Their electrical properties depend on their structure and they act as either a metal or a 

semiconductor. 

Types of CNT: 

(i) Arm chair  

(ii) Zigzag 

(iii)  Chiral 

 The axis of tube parallel to c-c bonds of the carbon hexagons are arm chair  

 The axis of the tube is perpendicular to c-c are zigzag structure 

 The axis of tube is inclined to c-c are chiral structure  

Classification: 

(i) Single walled CNTs 

(ii) Multi walled CNTs 

in Multiwalled CNTs more than one CNTs are coaxially arranged 

Properties: 

Electrical: 

(i) CNTs are metallic (or) semi conducting depending on diameter of chirality 

(ii) The energy gap of semiconducting chiral carbon nanotubes is inversely proportional to the 

diameter of tube. 
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(iii) The energy gap also varies along the tube axis and reaches a minimum value at the tube 

ends. This is due to the presence of localised defects at the ends due to the extra energy 

states. 

(iv) In SWCNT conduction occurs through discrete electronic states that are coherent between 

the electrical contacts. 

Mechanical: 

(i) The strength of C – C bond is very high leading to ultimate tensile strength 

(ii) Young’s modules is 5 times greater than steel.  

(iii) Tensile strength is 50 times higher than steel 

(iv) Carbon nanotubes have ability to withstand extreme strength 

(v) It can recover from severe structural distortions due to rehybridization 

(vi) The strength of sp2 C-C bond gives high hardness for CNTs 

Physical  

(i) It have a high strength to weight ratio. This is indeed useful for light weight applications. 

(SWCNT →ρ = 0.8 g/cm3; MWCNT →ρ = 1.8 g/cm3). 

(ii) The surface are of nanotubes is of the order of 10-20 m2/g which is higher than that of 

graphite. 

Chemical 

(1) They are highly resistant to any chemical reaction.it is difficult to oxidize them and the on 

set of oxidation in nanotubes is 100° C higher than that of carbon fibres. 

Thermal 

 Nanotubes have a high thermal conductivity and the value increase with decrease in diameter 

Applications: 

(i) It is used in development of flat panel displays 

(ii) It is used to design LEDs, FET and as switching devices 

(iii) It is used to produce battery, solar and fuel cells 

(iv) It is used as sensitive detector of various gases. 

(v) It is used as a catalyst for chemical reactions. 

(vi) It provides light weight shielding material for electromagnetic radiation 

(vii) It is  used in nano scale electronic devices 

(viii)    CNTs are used in drug delivery 

 


