

Anna University Solved Problems

Unit - 1: Electrical Properties of Materials

1. The Following data are given for copper

(i) Density = $8.92 \times 10^3 \text{ kg/m}^3$ (ii) Resistivity = $1.73 \times 10^{-8} \Omega \cdot \text{m}$
(iii) Atomic weight = 63.5

Calculate the mobility and the average time collision of electrons in copper obeying classical laws. (DECEMBER 2001)

Given data(s): (i) Density (ρ) = $8.92 \times 10^3 \text{ kg/m}^3$
(ii) Conductivity (σ) = $1/\rho = 5.780 \times 10^7 \Omega^{-1} \text{m}^{-1}$
(iii) Avagardo number (A) = $6.023 \times 10^{23} \text{ kg/mol}$
(iv) Atomic weight (Z) = 63.5
(v) Charge of electron (e) = $1.6 \times 10^{-19} \text{ C}$
(vi) Mass of electron (m) = $9.11 \times 10^{-31} \text{ kg}$.

Formula(s): (i) Number of electrons per unit volume $n = \frac{\text{Density} \times \text{Avagardo No.}}{\text{Atomic weight}} \text{ m}^{-3}$

$$(ii) \text{ WKT, } \sigma = \frac{ne^2\tau}{m} \text{ (or) } \tau = \frac{\sigma m}{ne^2} \text{ sec}$$

$$(iii) \text{ Mobility } \mu = \frac{\sigma}{ne} \text{ m}^2 \text{V}^{-1} \text{S}^{-1}$$

$$\text{Calculation(s): (i) } n = \frac{8.92 \times 10^3 \times 6.023 \times 10^{23}}{63.5} = 8.46 \times 10^{25} \text{ m}^{-3}$$

$$(ii) \tau = \frac{5.78 \times 10^7 \times 9.11 \times 10^{-31}}{8.46 \times 10^{25} \times (1.6 \times 10^{-19})^2} = 2.43 \times 10^{-11} \text{ sec.}$$

$$(iii) \mu = \frac{5.78 \times 10^7}{8.46 \times 10^{25} \times 1.6 \times 10^{-19}} = 4.27 \text{ m}^2 \text{V}^{-1} \text{S}^{-1}$$

Answer(s):

(i) No. of electron / volume (n) = $8.46 \times 10^{25} \text{ m}^{-3}$
(ii) Relaxation time (τ) = $2.43 \times 10^{-11} \text{ sec}$
(iii) Mobility (μ) = $4.27 \text{ m}^2 \text{V}^{-1} \text{S}^{-1}$.

2. The thermal conductivity of copper at 300 K is $470 \text{ Wm}^{-1} \text{K}^{-1}$. Calculate the electrical conductivity of cooper if the Lorentz number is $2.45 \times 10^{-8} \text{ W}\Omega\text{K}^{-2}$. (JUNE 2010).

Given data(s): (i) Temperature (T) = 300 K
(ii) Thermal conductivity (K) = $470.4 \text{ Wm}^{-1} \text{K}^{-1}$
(iii) Lorentz Number (L) = $2.45 \times 10^{-8} \text{ W}\Omega\text{K}^{-2}$.

Formula(s): (i) WKT, $\frac{K}{\sigma} = LT$ (or) $\sigma = \frac{K}{LT} \text{ } \Omega^{-1} \text{m}^{-1}$

$$\text{Calculation(s): (i) } \sigma = \frac{470.4}{2.45 \times 10^{-8} \times 300} = 6.4 \times 10^7 \Omega^{-1} \text{m}^{-1}$$

Answer(s):

(i) Electrical conductivity of copper at 300K is $\sigma = 6.4 \times 10^7 \Omega^{-1}m^{-1}$

3. Calculate the electrical conductivity in copper if the mean free path of electrons is $4 \times 10^{-8}m$, electron density is $8.4 \times 10^{28} m^{-3}$ and the average thermal velocity of electron is $1.6 \times 10^6 ms^{-1}$ (DECEMBER 2012)

Given data(s): (i) Mean free path of electron (λ) = $4 \times 10^{-8} m$

(ii) Electron density (n) = $8.4 \times 10^{28} m^{-3}$

(iii) Average thermal velocity of electron (v) = $1.6 \times 10^6 ms^{-1}$.

(iv) Charge of the electron (e) = $1.6 \times 10^{-19} C$

(v) Mass of the electron (m) = $9.11 \times 10^{-31} kg$.

Formula(s): (i) $\sigma = \frac{ne^2\lambda}{mv} \Omega^{-1}m^{-1} \quad \because \frac{\lambda}{v} = \tau$

$$\text{Calculation(s): (i)} \quad \sigma = \frac{8.4 \times 10^{28} \times (1.6 \times 10^{-19})^2 \times 4 \times 10^{-8}}{9.11 \times 10^{-31} \times 1.6 \times 10^6} = 5.9 \times 10^7 \Omega^{-1}m^{-1}$$

Answer(s):

(i) Electrical conductivity of copper is $\sigma = 5.9 \times 10^7 \Omega^{-1}m^{-1}$

4. Calculate the electrical and thermal conductivities for a metal with a relaxation time of 10^{-14} seconds. If the density of electrons is $6 \times 10^{28} m^{-3}$, calculate its Lorentz number using the above result. (JUNE 2013).

Given data(s): (i) Relaxation time (τ) = $10^{-14} sec$

(ii) Temperature (T) = 300 K

(ii) Electron density (n) = $6 \times 10^{28} m^{-3}$

(iii) Mass of the electron (m) = $9.11 \times 10^{-31} kg$.

(iv) Charge of the electron (e) = $1.6 \times 10^{-19} C$

(v) Boltzmann constant (k) = $1.38 \times 10^{-23} J K^{-1}$.

Formula(s): (i) $\sigma = \frac{ne^2\tau}{m} \Omega^{-1}m^{-1}$

$$\text{(ii)} \quad K = \frac{\pi^2}{3} \times \frac{nk^2\tau T}{m} Wm^{-1} K^{-1}$$

$$\text{(iii)} \quad L = \frac{K}{\sigma T} W\Omega K^{-2}$$

$$\text{Calculation(s): (i)} \quad \sigma = \frac{6 \times 10^{28} \times (1.6 \times 10^{-19})^2 \times 10^{-14}}{9.11 \times 10^{-31}} = 1.686 \times 10^7 \Omega^{-1}m^{-1}$$

$$\text{(ii)} \quad K = \frac{\pi^2}{3} \times \frac{6 \times 10^{28} \times (1.38 \times 10^{-23})^2 \times 10^{-14} \times 300}{9.11 \times 10^{-31}} = 123.79 Wm^{-1}K^{-1}$$

$$\text{(iii)} \quad L = \frac{123.79}{1.686 \times 10^7 \times 300} = 2.45 \times 10^{-8} W\Omega K^{-2}$$

Answer(s): (i) Electrical conductivity (σ) = $1.686 \times 10^7 \Omega^{-1}m^{-1}$

(ii) Thermal Conductivity (K) = $123.79 Wm^{-1}K^{-1}$

(iii) Lorentz's Number (L) = $2.45 \times 10^{-8} W\Omega K^{-2}$.

5. Calculate the drift velocity and thermal velocity of conduction electrons in copper at a temperature of 300 K. When a copper wire of length of 2m and resistance 0.02Ω carries a current of 15 A. (Mobility (μ) = $4.3 \times 10^{-3} \text{ m}^2 \text{ V}^{-1} \text{ S}^{-1}$ (JAN 2014).

Given data(s): (i) Temperature (T) = 300 K
 (ii) Length of wire (L) = 2 m
 (iii) Mass of the electron (m) = $9.11 \times 10^{-31} \text{ kg}$.
 (iv) Resistance (R) = 0.02 Ω
 (v) Current (I) = 15 A
 . (vi) Mobility (μ) = $4.3 \times 10^{-3} \text{ m}^2 \text{ V}^{-1} \text{ S}^{-1}$

Formula(s): (i) $V = I R$ volts
 (ii) $E = V / L$ volt m^{-1}
 (iii) $v_d = \mu E$ m s^{-1}
 (iv) $v = \sqrt{\frac{3kT}{m}}$ ms^{-1} (Remember equipartition energy eqn.)

Calculation(s): (i) $V = 15 \times 0.02 = 0.3$ volts
 (ii) $E = 0.3 / 2 = 0.15$ volt m^{-1}
 (iii) $v_d = 4.3 \times 10^{-3} \times 0.15 = 0.645 \times 10^{-3} \text{ m s}^{-1}$.
 (iv) $v = \sqrt{\frac{3 \times 1.38 \times 10^{-23} \times 300}{9.11 \times 10^{-31}}} = 1.168 \times 10^5 \text{ ms}^{-1}$

Answer(s):
 (i) Drift velocity (v_d) = $0.645 \times 10^{-3} \text{ ms}^{-1}$
 (ii) Average velocity (v) = $1.168 \times 10^5 \text{ ms}^{-1}$.

6. Calculate the drift velocity of the free electrons in a copper wire whose cross sectional area is 1.0 mm^2 when the wire carries a current of 1A. Assume that each copper atom contributes one electron to the electron gas. Given $n = 8.5 \times 10^{28} \text{ m}^{-3}$ (MAY 2016).

Given data(s): (i) Conduction electron / m^3 , $n = 8.5 \times 10^{28} \text{ m}^{-3}$
 (ii) Charge of electron (e) = $1.6 \times 10^{-19} \text{ C}$
 (iii) Mass of the electron (m) = $9.11 \times 10^{-31} \text{ kg}$.
 (iv) Area of cross section (A) = $1.0 \times 10^{-6} \text{ m}^2$
 (v) Current (I) = 1 A
 .

Formula(s): (i) $v_d = \frac{I}{neA}$

Calculation(s): (i) $v_d = \frac{1}{8.5 \times 10^{28} \times 1.6 \times 10^{-19} \times 1 \times 10^{-6}} = 7.35 \times 10^{-5} \text{ ms}^{-1}$

Answer(s): Drift velocity (v_d) = $7.35 \times 10^{-5} \text{ ms}^{-1}$.

7. A metallic wire has a resistivity of $1.42 \times 10^{-8} \Omega \text{m}$. For an electric field of 0.14 V/m . Find (i) average drift velocity and (ii) mean collision time, assuming that there are $6 \times 10^{28} \text{ electrons/m}^3$ (APRIL 2015).

Given data(s): (i) Conduction electron / m^3 , $n = 8.5 \times 10^{28} \text{ m}^{-3}$
 (ii) Charge of electron (e) = $1.6 \times 10^{-19} \text{ C}$
 (iii) Mass of the electron (m) = $9.11 \times 10^{-31} \text{ kg}$.
 (iv) Electric field (E) = 0.14 V m^{-1}
 (v) Resistivity (ρ) = $1.42 \times 10^{-8} \Omega \text{ m}$

Formula(s): (i) $\rho = \frac{m}{ne^2\tau}$ (or) $\tau = \frac{m}{ne^2\rho}$
 (ii) $v_d = \left(\frac{eE\tau}{m} \right)$

Calculation(s): (i) $\tau = \frac{9.11 \times 10^{-31}}{6 \times 10^{28} \times (1.6 \times 10^{-19})^2 \times 1.42 \times 10^{-8}} = 4.17 \times 10^{-14} \text{ sec.}$
 (ii) $v_d = \left(\frac{1.6 \times 10^{-19} \times 0.14 \times 4.17 \times 10^{-14}}{9.11 \times 10^{-31}} \right) = 1.025 \times 10^{-3} \text{ ms}^{-1}$

Answer(s): (i) Relaxation time (τ) = $4.17 \times 10^{-14} \text{ sec.}$
 (ii) Drift velocity (v_d) = $1.025 \times 10^{-3} \text{ ms}^{-1}$.

8. If the energy level is lying 0.01 eV above Fermi level in a solid, what is the probability of this level being occupied by an electron at 270 K ? (JUNE 2010).

Given data(s): (i) $E - E_F = 0.01 \text{ eV}$
 (ii) Boltzmann constant (K) = $1.38 \times 10^{-23} \text{ J K}^{-1}$
 (iii) Temperature (K) = 270 K

Formula(s): (i) $F(E) = \frac{1}{1 + e^{(E-E_F)/kT}}$

Calculation(s): (i) $F(E) = \frac{1}{1 + e^{(0.01 \times 1.6 \times 10^{-19}) / (1.38 \times 10^{-23} \times 270)}}$
 $F(E) = \frac{1}{1 + e^{0.4294}} = 0.39$

Answer(s): (i) $F(E) = 0.39$ (it is the probability of occupancy).

9. Evaluate the Fermi function for an energy kT above the Fermi energy? (JUNE 2019).

Given data(s): (i) $E - E_F = kT$
 (ii) Boltzmann constant (K) = $1.38 \times 10^{-23} \text{ J K}^{-1}$

Formula(s): (i) $F(E) = \frac{1}{1 + e^{(E-E_F)/kT}}$

Calculation(s): (i) $F(E) = \frac{1}{1 + e^{(kT)/(kT)}}$
 $F(E) = \frac{1}{1 + e^1}$
 $F(E) = \frac{1}{1 + 2.7138} = 0.2689$

Answer(s): (i) $F(E) = 0.2689$ (it is the probability of occupancy).

10. Calculate the Fermi energy of copper at 0 K if the concentration of electron is $8.5 \times 10^{28} \text{ m}^{-3}$? (APRIL 2017).

Given data(s): (i) $n_c = 8.5 \times 10^{28} \text{ m}^{-3}$
 (ii) $h = 6.626 \times 10^{-34} \text{ J s}^{-1}$
 (iii) $m = 9.11 \times 10^{-31} \text{ kg}$

Formula(s): (i) $E_F = \left(\frac{3n_c}{8\pi} \right)^{2/3} \times \frac{h^2}{2m}$

Calculation(s): (i) $E_F = \left(\frac{3 \times 8.5 \times 10^{28}}{8\pi} \right)^{2/3} \times \frac{(6.626 \times 10^{-34})^2}{2 \times 9.11 \times 10^{-31}}$

$$E_F = (1.0146 \times 10^{28})^{2/3} \times 2.40965 \times 10^{-37}$$

$$E_F = 1.12932 \times 10^{-18} \text{ J}$$

$$E_F = \frac{1.12932 \times 10^{-18}}{1.6 \times 10^{-19}} = 7.05 \text{ eV}$$

Answer(s): (i) Fermi energy at $T = 0 \text{ K}$ is $E_F = 7.05 \text{ eV}$.

11. Calculate the temperature at which there is 1% probability of a state with energy 0.5 eV above Fermi energy. (JUNE 2011).

Given data(s): (i) $F(E) = 1\% = 0.01$
 (ii) $k = 1.38 \times 10^{-23} \text{ J K}^{-1}$
 (iii) $E - E_F = 0.5 \text{ eV}$.

Formula(s): (i) $F(E) = \frac{1}{1 + e^{(E-E_F)/kT}}$

Calculation(s): (i) $\frac{1}{F(E)} = 1 + e^{(E-E_F)/kT}$

$$\frac{1}{F(E)} - 1 = e^{(E-E_F)/kT}$$

Taking log on both sides

$$\log\left(\frac{1}{F(E)} - 1\right) = \frac{E - E_F}{kT}$$

$$T = \frac{E - E_F}{k \left(\log\left(\frac{1}{F(E)} - 1\right) \right)}$$

$$T = \frac{0.5 \times 1.6 \times 10^{-19}}{1.38 \times 10^{-23} \left(\log_e\left(\frac{1}{0.01} - 1\right) \right)}$$

$$T = \frac{8 \times 10^{-20}}{1.38 \times 10^{-23} \times (\log_e 99)}$$

$$T = 1261.58 \text{ K}$$

Answer(s): (i) Temperature (T) = 1261.58 K.

12. Calculate the carrier concentration of electrons in an energy interval of 0.01 eV above the Fermi level of sodium metal. The Fermi energy of sodium at 0 K is 3 eV. (JUNE 2012).

Given data(s): (i) $E_F = 3 \text{ eV}$
(ii) $h = 6.626 \times 10^{-34} \text{ J s}^{-1}$

Formula(s): (i) $n = \frac{4\pi}{h^3} (2m)^{3/2} \times \int_{E_1}^{E_2} E^{1/2} dE$

Calculation(s): (i) Fermi energy at $T = 0 \text{ K}$, $E = E_F = 3 \text{ eV}$
Therefore, $E_1 = 3 \times 1.6 \times 10^{-19} = 4.8 \times 10^{-19} \text{ J}$

(ii) Fermi energy above 0.01 eV is $E_2 = E_1 + 0.01 \text{ eV}$
 $E_2 = 3 + 0.01 \text{ eV}$
 $E_2 = 3.01 \text{ eV}$
 $E_2 = 4.816 \times 10^{-19} \text{ J}$

The Number of states per unit volume in the energy states between E_1 and E_2 are

$$n = \frac{4\pi}{h^3} (2m)^{3/2} \times \int_{E_1}^{E_2} E^{1/2} dE$$

$$(\text{or}) \quad n = \frac{4\pi}{h^3} (2m)^{3/2} \times \frac{2}{3} [E_2^{3/2} - E_1^{3/2}]$$

$$(\text{or}) \quad n = \frac{4\pi}{(6.626 \times 10^{-34})^3} (2 \times 9.11 \times 10^{-31})^{3/2} \times \frac{2}{3} [(4.816 \times 10^{-19})^{3/2} - (4.8 \times 10^{-19})^{3/2}]$$

$$(\text{or}) \quad n = \frac{6.181052 \times 10^{-44}}{(6.626 \times 10^{-34})^3} \times \frac{1}{3} [(4.816 \times 10^{-19})^{3/2} - (4.8 \times 10^{-19})^{3/2}]$$

$$(\text{or}) \quad n = \frac{6.181052 \times 10^{-44} \times 1.664154 \times 10^{-30}}{3 \times (6.626 \times 10^{-34})^3}$$

$$(\text{or}) \quad n = 1.1786 \times 10^{26} \text{ m}^{-3}$$

Answer(s): (i) Carrier concentration (n) = $1.1786 \times 10^{26} \text{ m}^{-3}$