

Anna University Solved Problems

Unit - 3: Magnetic materials

1. The magnetic field strength of copper is 10^6 ampere / metre. If the magnetic susceptibility of copper is -0.8×10^{-5} , calculate the magnetic flux density and magnetization in copper (May 2014)

Given data(s): (i) Magnetic field strength (H) = 10^6 Am $^{-1}$
(ii) Magnetic susceptibility (χ) = -0.8×10^{-5}
(iii) Permeability of free space (μ_0) = $4\pi \times 10^{-7}$ H/m

Formula(s): (i) $I = \chi H$
(ii) $\mu_r = 1 + \chi$
(iii) $B = \mu_0 \mu_r H$

Calculation(s): (i) $-0.8 \times 10^{-5} \times 10^6 = -8$ Am $^{-1}$
(ii) $1 - 0.8 \times 10^{-5} = 0.999$
(iii) $0.999 \times 4\pi \times 10^{-7} \times 10^6 = 1.26$ Wb m $^{-2}$

Answer(s):

(i) Magnetization in copper (I) = -8 Am $^{-1}$
(ii) Magnetic flux density (B) = 1.26 Wbm $^{-2}$

2. A magnetic field of 1800 ampere / meter produces a magnetic flux of 3×10^{-5} weber in an iron bar of cross sectional area 0.2 cm 2 . Calculate magnetic permeability (May 2015).

Given data(s):

Magnetizing field (H) = 1800 Am $^{-1}$
Magnetic flux (ϕ) = 3×10^{-5} weber

Formula(s): $B = \phi / A$
 $\mu = B / H$

Calculations:

$$B = \frac{3 \times 10^{-5}}{0.2 \times 10^{-4}} = 1.5 \text{ Wb/m}^2$$

$$\mu = \frac{1.5}{1800} = 8.33 \times 10^{-4} \text{ Hm}^{-1}$$

Result(s)

$$B = 1.5 \text{ Wb/m}^2$$
$$\mu = 8.33 \times 10^{-4} \text{ Hm}^{-1}$$

3. The saturation magnetic induction of nickel is 0.65 Wb/m 2 . If the density of nickel is 8906 kg/m 3 and atomic weight is 58.7 , calculate the magnetic moment of the nickel atom in Bohr magneton (December 2016).

Given data (s):

Magnetic induction (B) = 0.65 Wb m⁻²

Density (ρ) = 8906 kg m⁻³

Atomic weight (M) = 58.7

Permeability of free space (μ_0) = $4\pi \times 10^{-7}$ H/m

Avagardo number (N) = 6.023×10^{26}

Bohr magneton (μ_B) = 9.27×10^{-24} Am²

Formula (s):

$$(i) B = n \mu_0 \mu_m \text{ (or)} \quad \mu_m = \frac{B}{n\mu_0}$$

$$(ii) \text{No. of atoms per unit volume} \quad n = \frac{\rho N}{M}$$

Calculation(s):

$$n = \frac{8906 \times 6.023 \times 10^{26}}{58.7} = 9.14 \times 10^{28} \text{ m}^{-3}$$

$$\mu_m = \frac{0.65}{9.14 \times 10^{28} \times 4\pi \times 10^{-7}} = 5.66 \times 10^{-24}$$

$$\mu_m = \frac{5.66 \times 10^{-24}}{9.27 \times 10^{-24}} = 0.61 \mu_B$$

Results:

$$n = 9.14 \times 10^{28} \text{ atoms/m}^3$$

$$\mu_m = 0.61 \mu_B$$

4. A paramagnetic material has bcc structure with a cube edge of 2.5 Å. If the saturation value of magnetization is 1.8×10^6 ampere / meter. Calculate the average magnetization contributed per atom in Bohr magneton (December 2016).

Given data (s):

$$a = 2.5 \text{ \AA} = 2.5 \times 10^{-10} \text{ m}$$

$$M = 1.8 \times 10^6 \text{ Am}^{-1}$$

$$e = 1.6 \times 10^{-19} \text{ C}$$

$$h = 6.626 \times 10^{-34} \text{ Js}$$

Formula (s):

No of atoms / unit volume = No. of atoms in an unit cell / volume of unit cell

Average magnetization = Magnetization / No. of atoms per unit volume

Calculation(s):

$$\text{No. of atoms per unit volume} = \frac{2}{(2.5 \times 10^{-10})^3} = 1.28 \times 10^{29} \text{ m}^3$$

$$\text{Average magnetization per atom} = \frac{1.8 \times 10^6}{1.28 \times 10^{29}} = 1.406 \times 10^{-23} \text{ Am}^{-1}$$

$$\text{Average magnetization per Bohr magneton} = \frac{1.406 \times 10^{-23}}{9.27 \times 10^{-24}} = 1.52 \mu_B$$

Results:

$$\text{Average magnetization per Bohr magneton} = 1.52 \mu_B.$$

5. Prove that $\mu_r = 1 + \chi$.

Solution:

When the magnetic material is kept in an external magnetic field, then the flux density can be written as $B = \mu_0 (H+I)$ (1)

In the absence of magnetic field, we know that $B = \mu H$ (2)

Sub (1) in (2), we get

$$\mu H = \mu_0 (H+I)$$

$$\text{(or)} \quad \mu_0 \mu_r H = \mu_0 (H+I)$$

$$\text{(or)} \quad \mu_r H = H \left[1 + \frac{I}{H} \right]$$

$$\text{(or)} \quad \mu_r = 1 + \chi$$

Hence proved.

(since $\mu = \mu_0 + \mu_r$)