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1. Mechanics 

 

Objective: 

 To make the students effectively to achieve an understanding of mechanics. 

Syllabus: 

Multiparticle dynamics: Center of mass (CM) - CM of continuous bodies - motion of the CM - 

kinetic energy of system of particles. Rotation of rigid bodies: Rotational kinematics - rotational 

kinetic energy and moment of inertia - theorems of M .I - moment of inertia of continuous bodies 

- M.I of a diatomic molecule - torque - rotational dynamics of rigid bodies - conservation of 

angular momentum - rotational energy state of a rigid diatomic molecule -  gyroscope - torsional 

pendulum - double pendulum - Introduction to nonlinear oscillations.  

 

1. Introduction 

Mechanics is a branch of physics which deals with the motion of bodies under the action of 

forces. In elementary mechanics, most of the bodies are assumed to be rigid. But in actual 

practice, no body is perfectly rigid. When a stationery body is acted upon by some external 

forces, then the body may start to rotate (or) move about any point. If the body doesn’t move (or) 

rotate then it is said to be in equilibrium. 

We know that the rigid body is the combination of many particles i.e., multiparticle. Let us 

discuss the basic definitions relate to mechanics 

(1) Angular displacement 

Definition 

The change in position of the particle moving in a circular path with respect to an angle (d) is 

called angular displacement. 

Proof 

Let us consider a particle of mass m moving in a circular path of radius ‘R’  

with respect to the center of the circle O. At t=0 sec, the particle is located 

at the point A and after time interval t , it reaches the point B as shown in  

figure. 

W.K.T., the angular displacement of a particle is the change in angular  

Position between two points A and B, which can be measured by the angle 

(2-1) between the radius vector of these two positions A and B. 

∴ the angle between A and B is d = (2 - 1). 

Angular displacement d = (2 - 1). (unit: Radian) 

We can write arc length as AB = l, 

 Then the relation between angular displacement (d) and linear displacement (l) is given by its 

arc length as l = R d. 
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(2) Angular velocity 

The rate of change of angular displacement is called angular velocity 

i.e., Angular velocity () = d /dt.   (unit : Rad s-1) 

The relation between angular velocity () and linear velocity (v) is given by v = r . 

(3) Angular acceleration 

The rate of change of angular velocity is called angular acceleration. 

i.e., Angular acceleration () = d/dt  (or) d2 / dt2. (Unit: Rad s-2). 

(4) Angular momentum 

The moment of inertia times of angular velocity of the particle is called angular momentum. 

i.e., Angular momentum L = I  (Unit : kgm2s-1) 

(5) Inertia 

It is the tendency of an object to maintain its state of rest or of uniform motion along the same 

direction. Inertia is a resisting capacity of an object to alter its state of rest and motion (direction 

and /or magnitude). 

 

1.1. Multiparticle dynamics (Dynamics in a system of particles) 

We know dynamics is the study of motion of bodies under the action of forces. Multiparticle 

dynamics (dynamics in a system of particles) is the study of motion in respect of a group of 

particles in which the separation between the particles will be very small i.e., the distance 

between the particles will be negligible. 

Explanation 

In dynamics, we study the physical parameters by considering an object as a point mass and its 

shape and size is ignored. But, in real world problems, object will execute rotational and 

translational motion. For example, if we kick the football, it has both translational and rotational 

motions. As both the motion depends on the size and shape of the object, both cannot be ignored, 

even it is negligible. Thus, the study of rotational and translator motion with respect to the system 

of particles is called multi-particle dynamics.  

 

1.2. Centre of mass 

We know that mass is the measure of the body’s resistance to change the motion (or) it is measure 

of inertia of the body. It is a scalar quantity and it is constant.  

(i) A system consists of many particles with different masses and different position from the 

reference point. 

(ii) The mass of the system is equal to the sum of the mass of each particle in the system. 
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Hence, if the mass of the entire particles of the system is concentrated at a particular point, that 

point is called centre of mass of the system. 

1.3. Centre of mass in a one dimensional system 

The system consists of many particles with different positions and different masses. If the mass 

of the entire particle in the system is concentrated at a particular point, then that point is called 

centre of mass of the system. 

Explanation 

Let us consider a fulcrum placed along the x axis which is not at equilibrium position as shown 

in figure. 

 

 

 

Let the position of masses m1, m2, m3, ….., mn-1, mn be at a distance of x1,x2,……..,xn-1,xn 

respectively from the fulcrum. The tendency of a mass to rotate with respect to origin or 

supporting point is called moment of mass. 

The moment of mass for an elemental mass mn with respect to the fulcrum can be written as 

mnxn. If the moments on both sides are equal, then the system is sai to be in equilibrium. 

Therefore, total moments with respect to the fulcrum shall be written as 

1 1 2 2

1

....... 0
N

n n i i

i

m x m x m x m x


                                                                                     (1) 

If the total moment is equal to zero, then the centre of mass will lie at the supporting point (or) 

fulcrum and the system is said to be in equilibrium. If the fulcrum is placed at the unbalanced 

position, then it is shifted to a balanced position (say of distance X) to reach the equilibrium 

position. 

Under equilibrium condition, 

1 1

0
n n

i i i

i i

m x m X
 

    

(or) 
1 1

n n

i i i

i i

m x m X
 

   

(or) 
1 1

n n

i i i

i i

m x X m
 

   

(or) 1

1

n

i i

i

n

i

i

m x

X

m









                                                                                                                   (2) 
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Where 
1

n

i i

i

m x


  is the moment of system and  

1

n

i

i

m


  is the mass of the system 

Thus, the system should be move to a distance of X metres in order to attain the balanced position 

of the system. 

The distanced moved to obtain equilibrium position (or) so called the centre of mass in a one 

dimensional system is given by 

1 1 2 2

1 2

....

.....

m x m x
X

m m

 


 
                                                                                                       (3) 

1.4. Centre of mass in three dimensional system 

To find the centre of mass in a three dimensional system, let us consider a three dimensional 

system in which let m1, m2, m3,…. be the masses placed at position vectors r1(x1,y1, z1), 

r2(x2,y2,z2),…. Respectively from the origin ‘O’ as shown in figure 

            

         

 

 

 

 

 

 

Here,  

(i) The centre of mass along the x – axis,  

1 1 2 2 1

1 2

1

....

.....

n

i i

i

n

i

i

m x
m x m x

X
m m

m





 
 

 
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(ii) The centre of mass along y-axis,  

1 1 2 2 1

1 2

1

....

.....

n

i i

i

n

i

i

m y
m y m y

Y
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m
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

 
 

 
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(iii) The centre of mass along z-axis, 
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1 1 2 2 1

1 2

1
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n

i i

i

n

i

i
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In general, centre of mass of the three dimensional system can be written as 

11 2 2 1

1 2

1

....
( , , )

.....

n

i i

i
cm n

i

i

m r
m r m r

r X Y Z
m m

m





 
 

 




 

Where i i i ir x i y j z k   is the position vector in three dimensional coordinate system. 

1.5. Centre of mass in continuous bodies 

When a system contains ‘n’ number of particles, where the mass and position of each particle is 

represented by mi and ri respectively, then 

The centre of mass of the system  
i i

i
cm

i

i

m r

r

m





                                                               (1) 

Equation (1) represents the summation of the centre of mass of a system. However, this equation 

will not hold good for continuous bodies, because, a continuous body will have infinitesimal 

small region. Therefore, instead of summation, we need to integrate the equation(1) for obtaining 

the centre of mass of continuous bodies. 

Let us consider the mass of the one such small region ‘dm’ and its position ‘r’. If the elemental 

mass mi is arbitrarily very small in the region i.e., if mi tends to zero, then equation (1) will 

become an integral over the entire volume of the body. 

 
0

lim
i

i i

i
cm

M

i

i

m r
rdm

r
M

m


 
 


 

(or) cm

rdm
r

M



                                                                                                              (2) 

Equation (2) represents the centre of mass of continuous bodies. 

1.5 a centre of mass of a solid cone 

Let us consider a solid circular cone of base radius a and height h. let  be the density of the 

material of the cone. If the solid cone is homogeneous, then its mass  

21
.

3
m a h   
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The centre of mass lies on the axis of symmetry AO. The cone is connected to made up of large 

number of circular discs, each of thickness dy.  

Let us consider one such elementary disc of radius x at a distance y from the vertex A of the solid 

cone. The mass of this elementary disc is 

dm =  ( x2) dy                    (1) 

From the figure,  
x y

a h
  

(or) 
a

x y
h

  

2

. . .
a

dm y dy
h

 
 

   
 

                 (2) 

Now from equation (1), we have for the distance of centre of mass on the axis of symmetry AO 

as measured from the vertex A as 

1
.CMY y dm

M
                   (3) 

Substituting equation (2), in (3), we get 

2
1

. . . .CM

a
Y y y dy

M h
 

 
  

 
  

(or) 

2
3

2

. .
.

.
CM

a
Y y dy

M h

 
                                                                                                    (4) 

Where the limits of y is taken from y = 0 to y = h to cover the entire solid cone filled with such 

elementary discs. It gives 

2 4

2

0

. .

. 4

h
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Y
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   
  

 
 

2 4 2 2

2
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    
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But  M  = Total  mass of the solid cone = 21
.

3
a h    

Hence, 

2 2

2

. . . .3

4. . . .
CM

a h
Y

a h

 

 
  

The CM of cone from its vertex YCM is written as RCM 

3

4
CMR h  

Thus, CM of a solid cone is at a distance of ¾ h from vertex of the cone along the axis. 

Centre of mass of a triangular lamina 

The medians of the triangle are axes of symmetry in the base of triangular sheets. We 

simply draw any two medians of   the triangle which intersect at a point. This point is 

the centre of mass of the triangular body (Fig). 

We know that the medians bisect each other in the ratio of 2:1 the position of centre 

of mass on any medians is obtained by dividing that median in the ratio 2:1 the larger 

portion being towards the vertex. That point is the centre of mass. 

 

 

 

 

 

 

 

 

 

Fig. The point of intersection of the medians of a triangle gives 

the position of centre of mass 

 

However, the position of centre of mass can also be calculated by assuming the triangle 

to be made up of large number of strips parallel to one side of the triangle and placed 

one above the other as shown in the figure. 

 

Centre of mass of some regular objects 

Figure shows the centre of masses of  some  regular  shaped homogeneous rigid 

bodies. 

For a rigid body, the centre of mass is a point at a fixed position with respect to the 

body as a whole. Depending  on the shape of the body and the way the mass is 

distributed in it, the centre of mass is a point may or    may not be within the body. 

If the shape  is  symmetrical  and  the  mass  distribution is uniform, we can usually 

find the location of the centre  of mass quite easily. 
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For a long thin rod of uniform cross section and density, the centre of mass is at the 

geometrical centre. 

For a thin circular plane ring, It is again at the geometrical centre of the circle. 

For a flat circular disc or rectangle, again the centre of mass is at the geometrical 

centre. 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.6. Motion of the centre of mass 

The motion of the centre of mass is nothing but the force required to accelerate the system of 

particles with respect to the centre of mass 

The motion of centre of mass is nothing but the force required to accelerate the system of particles 

with respect to the centre of mass. 

The motion of the centre of mass shall be obtained as follows: 

Let us consider an external force ‘F’ acting on the system of particles along the x-axis. 

The centre of mass of the system along x-axis shall be written as 

i i
cm

i i

m x
x

m
  

(or) cm i i i

i i

x m m x   

Since im M , we can write 

1 1 2 2 .....cmMx m x m x                                                                                      (1) 

Differentiating equation (1) with respect to time, we get 
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 1 2
1 2 .....cmdx dx dx

M m m
dt dt dt

    

Differentiating once again with respect to time, we get 

2 2 2

1 2
1 22 2 2

.....cmd x d x d x
M m m

dt dt dt
                                                                       (2) 

Since acceleration is 

2d x
a

dt
 , therefore, equation (2), becomes 

1 1 2 2 .....cmMa m a m a                                                                                       (3) 

According to Newton’s second law, we know that F = m a  

Hence, equation (3) is rewritten as  

1 2 .....cmF F F      

(or) cm i

i

F F                                                                                                   (4) 

Equation (4) represents the force acting on the centre of mass which is equal to the sum of the 

forces that acting on the system of particles. This force is required to move the particles with 

respect to the centre of mass (or) so called motion of the centre of mass. 

S.No. Shape of the body Position of centre of mass 

1. uniform rod Middle point of rod 

2. Circular disc Centre of the disc 

3. Circular ring Centre of the ring 

4. Sphere Centre of sphere 

5. Hollow sphere Centre of sphere 

6. Cylinder Middle point of the axis 

7. Cubical Block Point of intersection of diagonals 

joining opposites corners 

8. Plane lamina Point of intersection of two 
diagonals 

9. Cone of pyramid On line joining the apex to the 

centre of the  base  of the cone at a 

distance 1/4th of the length of this 

line. 

10. Triangular plane 

lamina 

Point of intersection of medians 

of triangle. 
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1.7. Kinetic energy of system of particles 

Let us consider a multi-particle system with ‘n’ number of particles in which each particle is 

moving with some velocity. Let ri be its displacement and vi be the velocity of ith particle at any 

instant of time as shown in figure 

Then, the kinetic energy of the ith particle shall be written as 
21

2
K i i

i

E m v              (1) 

If Vcm is the velocity of centre of mass with respect to the origin ‘O’ and vim is the velocity of ith 

particle with respect to centre of mass. Then the velocity of the ith particle can be written as 

vi = vcm+vim                                                                                                                    (2) 

substituting equation (2) in equation (1), we get 

21
( )

2
K i cm im

i

E m v v   

(or) 
2 21

( 2 )
2

K i cm im cm im

i

E m v v v v    

(or) 
2 21 1 1

2
2 2 2

K i cm i im cm im

i i i

E m v m v v v      

(or) 

2 21 1

2 2
K i cm i im cm im

i i i

E m v m v v v    
                                                                (3) 

Here, i

i

m M and The total momentum with respect to centre of mass of the system is, 

0i im

i

m v   

Therefore, equation (3) becomes 

 

2 21 1
0

2 2
K cm i im

i

E Mv m v  
 

(or) 

2 21 1

2 2
K cm i im

i

E Mv m v  
                                                                                     (4) 

Equation (4) represents the kinetic energy of the system of the particles. 

Here, 21

2
cmMv  term represents the kinetic energy of the centre of the mass of the system and 

O x 

y 

mi 

ri 

rcm 

rim 
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21

2
i im

i

m v  represents the sum of kinetic energy of all particles (moving with centre of mass) with 

respect to the origin. 

1.8. Types of motion 

In general, there are two types of motion namely rotational and translational motions. 

(i) Translational motion 

 Here, a body moves in a straight line in which all the constituent particles move along parallel 

straight lines and will undergo equal displacements in equal intervals of time i.e., all the particles 

in the body will have same velocity an acceleration. 

Example: Movement of car, A coin moving over a carom board, An apple falling from a tree, 

etc., 

(ii) Rotational motion 

Here, a body moves about a fixed axis an each particle describes concentric circles about the 

axis. Though different particles at different points of the body will have different linear 

velocities, but they will have same angular velocity. 

Example: Motion of a door about its hinges, pulleys in vehicles, rotation of blades in a fan, etc., 

1.9. Rotation of rigid bodies 

A rigid body is an object which has definite shape and size and does not change due to external 

force. In otherwords, rigid body can be defined as an extended object in which the distance 

between particles is not altered during its motion. 

Rotational motion 

A rotational motion in a rigid body may be considered as a stationary motion and here, the 

rotation is caused by a couple acting on the body. Its state can be changed only by applying a 

couple (or) a set of couples. 

Explanation 

Let us consider a rigid body, which revolves around an axis OY through ‘O’ as shown in figure. 

                                                              

A P1 

B P2 

O 

d 
x 

y 

z 
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Let us consider two particles say P1 and P2 which revolves in a circular path, about the point A 

and B respectively. Here, it is found that the centre of each circle lies on OY and the radii of 

these circles (AP1 and BP2) will be equal to perpendicular distance from the axis OY. 

We know that in rotational motion, though the particles will have different linear velocities, they 

will have same angular velocity. Therefore all the particles will rotate through an angle d in a 

small interval of time dt  

Therefore, Angular velocity 
d

dt


   

The corresponding angular acceleration is 
d

dt


   

1.10 Rotational kinematics 

It describes the inter relationship between the angular displacement, angular velocity and angular 

acceleration with respect to the time. 

It describes the rotational motion of the particles without considering the mass (or) force affect 

the rotation. Kinematics of rotational motion for constant angular acceleration with respect to an 

axis of rotation is analogue to kinematics of linear motion.  

The equation governing the linear motion and rotation motion with various relationship between 

displacement, velocity, acceleration and time are provided in the table as follows: 

Sl. No. Linear motion Rotational motion 

1 Vf = ui + at f = i + α t 

2 S = vi t + ½ at2  = i t + ½ α t2 

3 Vf
2 = vi

2 + 2aS f
2 = i

2 + 2 α  

 Here vi - Initial velocity at t = 0 

        vf - Final velocity at t 

         a - Acceleration 

         t - Time 

        S - Displacement 

Here i - Initial angular velocity at t = 0 

        f - Final angular velocity at t 

         α - Angular acceleration 

         t - Time 

         - Angular displacement 

 

1.11 Rotational Kinetic Energy 

Let us consider a rigid body rotating about an axis XX’ with constant angular velocity ‘’ as 

shown in figure. All particles in rigid body have the same angular velocity ‘’ but with different 

linear velocity ‘v’ varies with radial distance from the axis XX’. 

Let v1, v2, …… vi, be the linear velocities of the particles of mass m1, m2, …….. mi, rotating about 

the axis of rotation at distance r1, r2,………ri, respectively. 

The kinetic energy of the particle with  mass m1 = 2

1 1

1

2
m v  

The kinetic energy of the particle with mass m2 = 2

2 2

1

2
m v  

 

X 

X’ 
B 

r1 

r2 

r3 

r4 

m 

m 

m 

m 
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The kinetic energy of the particle with mass mi = 21

2
i im v  

Then, the total K.E. of all the particles will corresponds to the K.E. of the body. 

 

2 2 2

1 1 2 2

1 1 1
. ........

2 2 2
i iTotalK E m v m v m v                                                                         (1) 

Since all the particles move with same angular velocities () but with different linear velocities 

(v1, v2, ….vi) at different distances (r1, r2, ……..ri) from the axis of rotation 

We can write v1 = r1 ; v2 = r2; ……………. vi =ri 

Equation (1) becomes,  

2 2 2 2 2 2

1 1 2 2

1 1 1
. ........

2 2 2
i iTotalK E m r m r m r       

(or) Total K.E. = 
2 21

2
i i

i

m r 
 
 
 
                                                                                      (2) 

Since I is the moment of inertia of body about the XX’ axis and is given by 

2

i i

i

I m r                (3) 

Equation (2), becomes 

Total Kinetic energy = 21

2
I                                                                                         (4) 

Equation (4) represents the rotational kinetic energy of the particles in a rigid body. 

 

1.12 Moment of Inertia 

Moment of inertia of a body about an axis is define as the summation of the product of the mass 

and square of the perpendicular distance of different particles of the body from the axis of 

rotation. 

Unit: kgm2 

Concept 

According to Newton’s first law of motion, a body at rest will remain at rest while a body in 

uniform motion along a straight line will move continuously unless an external force disturbs it. 

The property due to which a body does not change its state of rest or motion is called inertia. 

For the motion in a straight line, inertia depends on the mass of the body. i.e., if the mass is more, 

then the inertia will be more. However, when a body moves about an axis, the kinetic energy of 

its rotation not only depend on its mass and angular velocity, but also depends on the axis about 

which the rotation is taking place. 
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If we want to rotate a particle or a body for an angle ‘’, we need to overcome the system’s 

‘angular inertia’ which is often called moment of inertia (it is not just a mass). Thus, the angular 

inertia not only depends on the mass, but also depends on the square of the distances of particle 

from the axis of rotation. 

Proof 

Let us consider a rigid body ‘B’ which consists of ‘n’ number of particles located at different 

distances from the axis of rotation XX’ as shown in figure. 

Therefore, the moment of inertia of the first particle I1 = m1r1
2 

The moment of inertia of the second particle I2 = m2r2
2 

Therefore, we get the moment of inertia of the entire rigid body by summing the moment of 

inertia of all particles. 

2

i i

i

I m r                      (1) 

Equation (1) represents the moment of inertia of a rigid body. 

1.13 Radius of gyration 

If the whole mass of the rigid body ‘M’ is assumed to be concentrated at a distance ‘K’ from the 

axis of rotation, then I = M K2 

Here iM m  and K is the radius of gyration 

Definition 

The radius of gyration is defined as the distance from the axis of rotation to the point where the 

entire mass of the body is assumed to be concentrated.  

If the rigid body consists of n particles of equal mass m then the moment of inertia is 
2

iI mr  

(or) I = mr1
2 + mr2

2+…………….+ mri
2 

Multiply and divide by n on RHS, we have 

2 2 2

1 2 .... ir r r
I nm

n

   
  

 
 

(or) I = M K2 

Where M = nm is the mass of the body and  

2 2 2

1 2 .... ir r r
K

n

   
  
 

is the radius of gyration  about a given axis. This K is the rott mean 

square of the constituent particles in a body from the given axis. 

Unit of K is metre 
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Radius of gyration depends on size, shape, position, configuration of axis of rotation an 

distribution of mass of body with respect to the axis of rotation. 

1.14 Theorems of moment of inertia 

The moment of inertia not only depends on the rotation of axis but also depends on the orientation 

of the body with respect to the axis, which is different for different axis of the same body. Based 

on the orientation of the boy and with respect to the rotating axis, moment of inertia shall be 

calculated for various bodies by using the following theorems 

(1) Parallel axis theorem (2) Perpendicular axis theorem. 

 

1.15 Parallel axis theorem 

It states that moment of inertia with respect to any axis is equal to the sum of moment of inertia 

with respect to a parallel axis passing through the center of mass and the product of mass and 

square of the distance between the parallel axis. 

Proof 

Let us consider a body of mass M for which the centre of mass acts as G. Let AA’ be an axis 

parallel to XX’ passing through G. Let ‘x’ be perpendicular distance between the parallel axis 

AA’ and XX’ as shown in figure. The body consists of ‘n’ number of particles with different 

masses and at different distances from the XX’ axis. Let mi be the mass of one such particle in 

the body, located at a distance ri from the XX’ axis. 

The moment of inertia of this particle with respect to XX’ axis is  

dIxx
’ = miri

2           (1) 

Therefore, the moment of inertia of the entire body with respect to XX’ axis is 

Ixx = '

2

i iXX
dI m r                                                                                                            (2) 

Similarly, the moment of inertia of this particle with respect to AA’ axis is  

'

2( )i iXX
dI m r x            (3) 

The moment of inertia of the entire body with respect to AA’ axis is 

' '

2( )i iAA AA
I dI m r x            

  

' '

2 2( 2 )i i iAA AA
I dI m r x r x      

'

2 2 2i i i i iAA
I m r m x x m r                                                                                   (4) 

According to centre of mass for a rigid boy 0i im r   (ri has both positive and negative values, 

so they cancel with eachother.). Further iM m                                                         (5) 

G 

M 
A’ 

A 

X’ 

X 

ri 

mi 

x 
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Therefore, from equations (2) an (5) we can write equation (4) as 

' '

2

AA XX
I I Mx                 (6) 

Equation (6) represents the parallel axis theorem. 

 

1.16 Perpendicular axis theorem 

It states that the moment of inertia of a thin plane body with respect to an axis perpendicular to 

the thin plane surface is equal to the sum of the moments of inertia of a thin plane with respect 

to two perpendicular axis lying in the surface of the plane and these three mutually perpendicular 

axes meet at a common point. 

Proof 

Let us consider the thin plane body of mass M and three mutually perpendicular axes XX’, YY’ 

and ZZ’ passing through the point ‘O’. Let YY’ & ZZ’ axes lie in the surface of the thin plane 

and XX’ axis lies perpendicular to plane surface as shown in figure. 

Let mi be the mass of one such particle in the body located at a distance ri from the point ‘O’. 

The moment of inertiz of the thin plate with respect to XX’ axis is 

'

2

i iXX
dI m r                   (1) 

The moment of inertia of the entire body with respect to the axis XX’ is 

'

2

i iXX
I m r                 (2) 

From figure, we can write 
2 2 2

i i ir y z                                                                               (3) 

Substituting equation (3) in equation (2), we get 

'

2 2( )i i iXX
I m y z   

'

2 2

i i i iXX
I m y m z                  (4) 

We know that moment of inertia of a thin plane with respect to YY’ axis is  

 '

2

i iYY
I m y  

Similarly, the moment of inertia of a thin plate with respect to ZZ’ axis is 

'

2

i iZZ
I m z  

Hence, equation (4) becomes 

' ' 'XX YY ZZ
I I I           (5) 

Equation (5) represents the perpendicular axis theorem. 
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1.17 Moment of inertia of continuous bodies 

When a body contains ‘n’ number of particles, where the mass of each particle is represented by 

m1, m2, ……… mi and its position is represented by r1, r2,…..ri  with respect to the rotation axis, 

then  

The moment of inertia of the body 
2

i i

i

I m r                                                                 (1) 

Equation (1) represents the summation of moment of inertia of a system. However, this equation 

will not hold well for a continuous body, because a continuous body will have infinitesimal small 

regions. 

Therefore, instead of summation, we need to integrate the equation (1) for obtaining the moment 

of inertia of continuous bodies. 

Let us consider the mass of one such small region ‘dm’ and its position is ‘r’. If the elemental 

mass mi is arbitrarily very small in the region (mi 0), then equation (1) will become an integral 

over the entire volume of the body. 

2 2

0
lim

i
i i

m
i

I m r r dm


                 (2) 

Equation (2) represents the moment of inertia of continuous body. 

This method is used to find the moment of inertia for various bodies with different shapes. For 

example, Circular ring, Circular disc, Solid cylinder, Hollow cylinder, Solid sphere, Hollow 

sphere, etc., 

1.18 moment of inertia of thin uniform rod 

X 

X’ 

Y 

Z’ 

Z 

O ri 

yi 

zi 

m 
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Position 1 

About an axis through its centre of mass and perpendicular to its length 

Let PQ be a thin uniform rod of length l  & mass M. The rod is free to rotate abut an axes XX’ 

perpendicular to tis length and passing through the centre of mass ‘O’. 

Mass per unit length of the rod (linear density) 
M

m
l

                                               (1) 

Consider a small element dx at a distance x from ‘O’ 

Mass of the element (M) = m. dx 

Moment of inertia of this element about XX’ = mass x (distance )2 

                                                                         = m dx . x2                                           (2) 

The rod consists of number of such elements of length dx . Hence the moment of inertia I of the 

rod about XX’ is obtained by integrating equation (1) between x = -l/2 to x = l/2. 

2
2

2

.

l

l

I m x dx



                                                                                                                (3) 

 
3 2

2

3

l

l

x
I m



 
  

 
 

3 3

8 8

3

l l

I m

 
 

  
 
  

 

(or) 
3

12

l
I m

 
  

 
 

(or) 
2

12

l
I ml

 
  

 
 

(or) 
2

12

Ml
I

 
  
 

                                                                                                          (4) 

Where M = m l 

 About an axis passing through one end of the rod and perpendicular to its length 

Let PQ be a thin uniform rod of length l an mass M. O is its centre. As the rod is uniform, its 

centre and centre of gravity coincides. XX’ is an axis passing through O and perpendicular to the 

length of the rod. 

l/2 l/2 

X’ 

X 

P Q 

x 

-l/2 l/2 
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Moment of inertia of the rod about XX’ = 
2

12

Ml 
 
 

                                                           (5) 

Let AA’ be an axis passing through one end P an perpendicular to the length of the rod. Let I be 

the moment of inertia of the rod about this axis AA’ 

By parallel axis theorem, 

IAA’ = Ixx’ + Mx2                                                                                                                                                                          (6) 

Here the distance x = l/2, hence, substituting this and equation (5) in (6), we get 

22

'
12 2

AA

Ml l
I M

 
   

 
 

(or) 

2 2

'
12 4

AA

Ml Ml
I    

(or)

2

'

4

12
AA

Ml
I   

(or) 

2

'
3

AA

Ml
I   

 

1.19 moment of inertia of a circular ring 

Let us find the moment of inertia of a circular ring with rotating axis at various points. 

Position1 

Rotating axis is passing through the centre of mass (ring centre) and perpendicular to the 

ring plane 

Let us consider a circular ring with radius ‘R’ and mass ‘M’ rotating about an axis passing 

through the centre of ring ‘O’ as shown in figure. Let us consider a elemental portion of the ring 

(dl) at the circumference of the ring (L) and the mass of the elemental ring is ‘dm’ 

Therefore, the moment of inertia of the elemental ring is given by 

2( )dI dm R                                                                        (1) 

Here, the mass of an elemental portion ‘dm’ of the ring is 

Mass (dm) = Length mass density () X Length of the elemental portion of ring (dl) 

dm dl                                                                          (2) 

We know, the length mass density of the ring is 

l/2 l/2 

X’ 

X 

P Q O 

G 

A’ 

A 
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Mass(M)

Circumferencial length(L) 2

M

R



                               (3) 

Where R is the radius of the ring 

Substituting equation (3) in (2), we get 

2

M
dm dl

R
                                                                      (4) 

Substituting equation (4) in (1), we get 

2

2

M
dI dl R

R
    

(or) 
2

MR
dI dl


                                                                 (5) 

Since the circular ring is a continuous body, we can get the moment of inertia of the circular ring 

by integrating equation (5) within the limits of 0 to 2R. 

2

0
2

R
MR

dI dl




    

(or) 
2

0
2

R
MR

dI dl




   

(or)  
2

02

RMR
I l




  

(or)  2
2

MR
I R


  

(or) 2I MR  

Therefore, the moment of inertia of the circular ring when the rotating axis passing through centre 

of mass is I = M R2.                                                                                          (6) 

Position 2 

Rotating axis at the edge of the ring and perpendicular to the ring plane 

Let AA’ be the rotation axis at the edge of the ring which is 

perpendicular to the ring plane as shown in figure. Here, we can see that 

XX’ axis is passing through the centre of mass of the ring is parallel to 

AA’ axis. 

Based on parallel axis theorem, the moment of inertia with respect to 

AA’ axis is given by IAA’ = IXX’ + MR2                                    (7) 

Using equation (6), IXX’
 = MR2                                                (8) 

Substituting equation (8) in (7), we get 

O 
R 

M 

X’ 

X 

O 
R 

M 

X’ 

X 
A 

A’ 
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IAA’ = MR2 + MR2        

Therefore, IAA’ = 2MR2                                                            (9) 

                              

Position 3 

Rotating axis is passing through the diameter of the ring 

Let YY’ be the rotating axis passing through the diameter of the ring, 

which is perpendicular to XX’ as shown in figure 

Based on perpendicular axis theorem, we can write 

IXX’ = IYY’+IZZ’                                                                      (10) 

Here for circular disc, IZZ’ = IYY’ 

Therefore, equation (10) can be written as 

IXX’ = IYY’+IYY’     

(or) ' '2XX YYI I  

(or)   '
'

2

XX
YY

I
I                                                                     (11) 

Using equation (6), we can write IXX’ = MR2, hence equation (11) 

becomes, 

   

2

'
2

YY

MR
I                                                                                     (12)                 

Equation (12) represents the moment of inertia when the rotating axis is 

passing through the diameter of the ring.             

Position 4 

Rotating axis at the edge of the ring and parallel to ring plane 

Let AA’ be the rotating axis at the edge of the ring and parallel to the ring plane.  

Let YY’ be the axis that passes through the diameter of the ring, which is 

parallel to AA’ as shown in figure 

Based on parallel axis theorem, the moment of inertia with respect to 

AA’ axis is given by IAA’ = IYY’ + MR2                                    (13) 

Using equation (12), we can write 

2

'
2

YY

MR
I                         (14) 

Substituting equation (14) in (13), we get 

O 

R 

M 

X’ 

X 
Y’ Y 

O 
R 

M 

Y’ 

Y A 

A’ 
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2
2

'
2

AA

MR
I MR   

(or) 2

'

3

2
AAI MR                                                                    (15) 

Equation (15) is the moment of inertia when the rotating axis is at edge 

of the ring and parallel to ring plane. 

1.20 Moment of inertia of a circular disc 

Position 1 

Rotating axis is passing through the centre of mass and perpendicular 

to the disc plane 

Let us consider a circular disc with radius R rotating about an axis passing 

through the centre of the disc O. Let the mass of the disc M be uniformly 

distributed all over the surface area of the disc. 

The disc shall be assumed to contain infinitesimally small rings. Let us 

consider one such ring of the mass dm and thickness dr, which is located at 

a distance r from the centre of the disc O as shown in figure. 

Therefore, The moment of inertia of a small ring is given by 

dI = (dm) r2                                                                                     (1) 

Here, the mass of small ring (dm) with radius r is given by 

Mass (dm) = Surface density x circumference of the ring x Thickness of the ring 

( ).(2 ).( )dm r dr                                                                      (2) 

We know that, the surface mass density for the disc 

2

( )

( )

Mass M M

Area A R



               (3) 

Substituting equation (3) in equation (2), we get 

2
2 .

M
dm r dr

R



  

2

2
.

M
dm r dr

R
            (4) 

Substituting equation (4) in equation (1), we get 

2

2

2
. .

M
dI r dr r

R
  

(or) 3

2

2
.

M
dI r dr

R
                                                                       (5) 

R 
r 

O 

M 
dr 
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Since the circular disc is a continuous body, we can get the moment of inertia of the entire 

disc by integrating equation (5) within the limits 0 to R, 

3

2

0

2
R

M
dI r dr

R
    

(or) 3

2

0

2
R

M
I r dr

R
   

(or) 

4

2

0

2

4

R

M r
I

R

 
  

 
 

(or) 

4

2

2
.

4

M R
I

R
                                                                        

The moment of inertia of a circular disc I = ½ MR2   (6) 

Equation (6) represents the moment of inertia of a circular disc when the rotation axis is 

passing through the centre of mass. 

Position 2 

Rotating axis at the edge of the disc and perpendicular to the disc plane 

Let XX’ and AA’ axis are parallel and both the axis are perpendicular to disc 

surface as shown in figure. 

Based on parallel axis theorem 

IAA” = IXX’ + MR2                                                                  (7) 

Here, IAA’ is the moment of inertia of the circular disc fir which the rotational 

axis is the edge of the disc. 

Using equation (6), we can write IXX’ = ½ MR2         (8) 

Substituting equation (8) in (7), we get 

IAA’ = ½ MR2 + MR2 

IAA’ =  
3

2
MR2                 (9) 

Equation (9) represents the moment of inertia, when the rotational axis is at 

the edge of the disc. 

Position 3 

Rotating axis is passing through the diameter of the disc 

Let YY’ be the rotating axis passing through the diameter of the disc, 

which is perpendicular to XX’ as shown in figure 

Based on perpendicular axis theorem, we can write 

R 
 

O 

M 

X 

X’ 

A 

A’ 

R 
 

O 

M 

X 

X

’ 

Y

’ 

Y 
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IXX’ = IYY’+IZZ’                                                                      (10) 

Here for circular disc, IZZ’ = IYY’ 

Therefore, equation (10) can be written as 

IXX’ = IYY’+IYY’     

(or) ' '2XX YYI I  

(or)   '
'

2

XX
YY

I
I                                                                     (11) 

Using equation (6), we can write IXX’ = ½ MR2, hence equation (11) 

becomes, 

   2

'

1

4
YYI MR                                                                       (12) 

Equation (12) represents the moment of inertia, when the rotational axis is 

passing through the diameter of the disc. 

 

Position 4 

Rotating axis at the edge of disc and parallel to disc plane 

Let YY’ and AA’ axes are parallel to each other and also parallel to disc 

surface as shown in figure. 

Based on parallel axis theorem,  IAA” = IXX’ + MR2           (13) 

Substituting (13) in (12), we get 

2 2

'

1

4
AAI MR MR                         

   2

'

5

4
AAI MR                                                                     (14) 

Equation (14) represents the moment of inertia, when the rotational axis 

is at the edge of the disc an parallel to the plane.     

 

1.21 Moment of inertia of a solid cylinder 

Let us consider a solid cylinder of mass M , length L an radius R which contains infinitesimally 

thin cylinders as shown in figure. 

Here the mass is uniformly distributed all over the solid cylinder, rotating about the central axis. 

Let us consider one such thin cylinder having mass dm thickness dr and length L located at a 

distance r from central axis of the cylinder as shown in figure 

The top view of solid cylinder (of radius R ) and thin cylinder (of radius r) are shown in figure 

R 
 

O 

M 

X 

X

’ 

A

’ 

A’ 
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The moment of inertia of the thin cylinder is given by 

dI = (dm) r2                                                                                                    (1) 

Here, the mass of the thin cylinder (dm) is 

Mass (dm) = Volume density x Area x Length 

(or) dm = Volume density x circumference x thickness x length 

Therefore, dm =   . 2 r. dr . L                                                                  (2) 

We know that, the surface mass density for the disc 

2

( )

( )

Mass M M

Area A R L



                 (3) 

Substituting equation (3) in equation (2), we get 

2
2 . .

M
dm r dr L

R L



  

2

2
.

M
dm r dr

R
            (4) 

Substituting equation (4) in equation (1), we get 

2

2

2
. .

M
dI r dr r

R
  

(or) 3

2

2
.

M
dI r dr

R
                                                                       (5) 

R r 

O 

M 
dr 

R 
L 

M 

C
en

tr
al

 a
x

is
 

L 

dr r 
R O 
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Since the circular disc is a continuous body, we can get the moment of inertia of the entire 

disc by integrating equation (5) within the limits 0 to R, 

3

2

0

2
R

M
dI r dr

R
    

(or) 3

2

0

2
R

M
I r dr

R
   

(or) 

4

2

0

2

4

R

M r
I

R

 
  

 
 

(or) 

4

2

2
.

4

M R
I

R
                                                                        

The moment of inertia of a circular disc I = ½ MR2   (6) 

Equation (6) represents the moment of inertia of a solid cylinder with respect to central 

axis. 

1.22. Moment of inertia of a hollow cylinder 

Let us consider a hollow cylinder of inner radius R1 an outer radius R2 with length L which is 

rotating about the central axis as shown in figure. 

Here the mass is uniformly distributed all over the solid cylinder, rotating about the central axis. 

Let us consider one such thin cylinder having mass dm thickness dr and length L located at a 

distance r from central axis of the cylinder as shown in figure 

The top view of solid cylinder (of radius R ) and thin cylinder (of radius r) are shown in figure. 

Therefore, the moment of inertia of this thin layer of cylinder is given by dI = (dm) r2       (1) 

Here, the mass of a thin cylinder (dm) is 

Mass (dm) = Volume density x Area x Length 

 

 

 

 

 

 

 

 

 

C
en

tr
al

 a
x

is
 

L 

dr 

R1 

R2 O 

R1 

R2 

r 

dr 
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(or) dm = Volume density x circumference x thickness x length 

Therefore, dm =   . 2 r. dr . L                                                                               (2) 

We know that, the surface mass density for the disc 

2 2

2 1

( )

( ) ( )

Mass M M

Area A R R L



 


               (3) 

Substituting equation (3) in equation (2), we get 

2 2

2 1

2 . .
( )

M
dm r dr L

R R L






 

2 2

2 1

2
.

( )

M
dm r dr

R R
 


                                      (4) 

Substituting equation (4) in equation (1), we get 

2

2 2

2 1

2
. .

( )

M
dI r dr r

R R



 

(or)
3

2 2

2 1

2
.

( )

M
dI r dr

R R



                                                                                        (5) 

Since the circular disc is a continuous body, we can get the moment of inertia of the entire 

disc by integrating equation (5) within the limits 0 to R, 

2

1

3

2 2

2 1

2

( )

R

R

M
dI r dr

R R
 

   

(or) 
2

1

3

2 2

2 1

2

( )

R

R

M
I r dr

R R


   

(or) 

2

1

4

2 2

2 1

2

( ) 4

R

R

M r
I

R R

 
  

  
 

(or) 
4 4

2 1

2 2

2 1

2 ( )
.

( ) 4

M R R
I

R R





        

(or) 
2 2 2 2

2 1 2 1

2 2

2 1

1 ( ).( )
.

2 ( )

M R R R R
I

R R

 



                                                         

The moment of inertia of a circular disc I = ½ M
2 2

2 1( )R R                       (6) 
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Equation (6) represents the moment of inertia of a hollow cylinder with respect to central 

axis. 

If the wall of hollow cylinder is very thin, then R1  R2, which is equal to R,  

Then Moment of inertia of thin wall hollow cylinder is I = ½ M (R2+ R2) 

                                                                                 (or) I = MR2 
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1.23. Moment of inertia of rigid diatomic molecule 

Let us consider a rigid diatomic molecule containing two atoms of masses m1 and m2 separated 

by a distance x. Let this diatomic molecule be considered as a system connected by a weightless 

rigid rod as shown in figure. The centre of mass of the system (diatomic molecule) lies between 

the two atoms and is denoted by the point O. Let x1 and x2 be the distance of two atoms from the 

point O. 

 

 

 

 

 

 Therefore, from figure, we can write   x = x1 + x2                                                               (1) 

Since the system is balanced with respect to the centre of mass , we can write 

                                                      m1 x1 = m2 x2                                                                                                      (2) 

From equation (1), we can write  x2 = x – x1                                                                        (3) 

Substituting equation (3) in equation (2), we get 

           m1x1 = m2 (x – x1) 

(or)   m1x1 = m2 x – m2 x1 

(or)   m1x1 + m2 x1 = m2 x   

(or)  (m1 + m2) x1 = m2x 

2
1

1 2

m x
x

m m
 


                   (4) 

From equation (1), we can also write x1 = x – x2                                                                 (5)                              

Similarly, by substituting equation (5) in equation (2), we get 

          m1 (x – x2) = m2 x2 

(or)   m1 x – m1 x2 = m2 x2 

(or)   m1x = m1 x2 + m2 x2 

(or)  m1x = (m1+m2) x2 

m1 m2 

x1 x2 

x 

O 
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1
2

1 2

m x
x

m m
 


          (6) 

Moment of inertia 

The moment of inertia (I) of a diatomic molecule with respect to an axis passing through centre 

of mass of the system shall be written as 

I = m1 x1
2 + m2 x2

2                                                                                                                 (7) 

Substituting equation (4) and equation (6) in equation (7), we get 

        

2 2

2 1
1 2

1 2 1 2( ) ( )

m x m x
I m m

m m m m

   
    

    
 

(or)  
2

2 2

1 2 2 12

1 2

. .
( )

x
I m m m m

m m
   

 

(or)    
2

1 2
1 22

1 2

( . )

( )

x m m
I m m

m m
 


 

(or) 21 2

1 2

( . )

( )

m m
I x

m m



                  (8) 

Since 1 2

1 2

( . )

( )

m m

m m
 


 is called the reduced mass of the system, we can write equation (8) as 

I =  x2                 (9) 

Equation (9) represents the moment of inertia of a diatomic molecule. 

1.24 Moment, Couple and Torque 

Moment of force 

The moment of force about a point is defined as the product of the magnitude of the force and 

perpendicular distance from the point to the line of action of force. 

Explanation 

Let F be the force acting on a body at A as shown in figure. 

Then the moment of force F about O is Mo = F x d 

Where d is the perpendicular distance from the point O to the line of action of force F. 

Couple 

Line of action A 

O 

d 

Force (F) 
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A couple constitutes a pair of two equal and opposite forces acting on a body in such a way that 

the lines of action of the two forces are not in the same straight line. 

Explanation 

Let P and Q be the two equal and opposite forces acting on the body AB as shown in figure. Then 

these two forces from a couple and if the moment of the couple about A is MA and about B is MB 

then we can write 

Couple  = MA = MB = P x d            

Torque 

Torque is defined as moment of force acting on the body in rotational motion with respect to the 

fixed point. 

Explanation 

Torque is the rotating force and is equal to the moment of the couple. Torque is the product of 

one of the forces forming couple and the perpendicular distance from the pivot (or) central point 

at which the two opposite forces act. 

If F is the force acting at a distance r from the centre point O as shown in figure. Then, the 

product of one of the force forming couple and the perpendicular distance from pivot to force 

acting point us called torque or moment of force. 

Therefore, torque = force x radius 

        (or)  = F x r 

Torque is a vector quantity, which is perpendicular to both the direction of force and radius 

vector.        

 

  

 

 

 

 

1.25. Rotational dynamics of rigid bodies 

Dynamics of rigid bodies 

The dynamics of rigid bodies is the study of effect of external force and couples and its 

variation with respect to the rigid body. 

 

P 

Q 

A B 
d 

O r 

F 

F 
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Concept of rotational dynamics 

We know dynamics is the movement of rigid body under the force, which depends on where the 

force is acting and the state of restriction of the object. If the object has no restriction and force 

is acting through the centre of gravity, then the movement of the object is purely translational as 

explained by Newton’s law of motion. 

If the object is under the restriction (if the rigidly fixed at one point called pivot) and if the force 

is acting in such a way that the line of force is not passing through the pivot, then the movement 

of the object is purely rotational with respect to pivot. This is the concept of rotational dynamics. 

Explanation 

Let us consider two equal and opposite forces F and –F acting tangentially with respect to the 

pivot O on the rim of a circular disc from the extremities of diameter as shown in figure. It 

forms a couple. If the couple rotates through a small angle  , then, the distance moved by the 

force F in rotating the body through an angle  = Length of the arc AB. 

Workdone by two forces constitutes a couple = 2 F r  

Here the length of the arc AB = r  

Therefore, workdone by a single force = F r  

Here F r is the moment of the couple (or) torque () 

Therefore, workdone by the torque =  

If L is the angular momentum of the rotating body, then the 

relation between torque and angular momentum shall be 

written as  Torque 
dL

dt
   

Note: 

If the object rotation is anti-clock wise, the direction of torque 

is outward. If the object rotation is clock wise, then the 

direction of torque is inward. 

Rotational dynamics of rigid bodies 

The rotational dynamics of rigid bodies are described by the laws of kinematics and the 

applications of Newton’s laws of linear motion and rotational motion 

Eg: (1) Torsional pendulum 

       (2) Double pendulum 

       (3) Gyroscope 

In rotational dynamics the solutions of equations of motion are used to find the position, 

velocity, momentum, acceleration, etc., of the individual components of the system and course 

the overall system itself as a function. 

 

A A 

B 

B 

O 

-F 

-F 

F 

F 

 

 
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1.26. Newton’s laws for rotational motion 

Newton’s first law 

An object continue in its state of rest or uniform rotation with a constant angular velocity until 

it is acted up on by a non zero net torque. 

Newton’s second law 

When an external torque is applied to an object, the torque produces an angular acceleration, 

which is directly proportional to the torque and inversely proportional to the moment of inertia 

of the object. 

Proof 

From Newton’s law of linear motion, we can write 

F = m . a                                                                                                                              (1) 

We can convert the above linear motion equation (1) to a rotational motion equation by 

multiplying the radius on both sides. 

Therefore, r F = m a r                                                                                                        (2) 

Here, Torque ( ) = r F and acceleration   
dv

a
dt

 , 

Therefore, we can write equation (2) as,  
dv

m r
dt

                                                         (3) 

Since v =  r , we can write equation (3) as 
( )d r

m r
dt


   

                                                    (or) 2 d
mr

dt


                                                             (4) 

Since I = m r2  and Angular acceleration 
d

dt


   

We can write equation (4) as Torque  = I  

 (or) 
Torque ( )

Angular acceleration ( )
Moment of inertia ( )I


   

Hence Newton’s II law is proved. 

1.27. Conservation of angular momentum 

We know that the relation between torque () and angular momentum (L) is, 

Torque 
dL

dt
   

If no net external torque is acting on the body i.e., if net = 0, then the angular momentum (L) of 

the body will be constant 
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i.e., if net = 0  0
dL

dt
  

Therefore L is constant 

The above equation is known as the law of conservation of angular momentum. It shows that 

the angular momentum of the rigid body is constant at any instant of time t, if the net torque is 

zero. In other words we can say that if the net torque is zero, then the angular momentum in a 

rigid body will be equal. If L1 and L2 are the angular momentum, then we can write 

L1 = L2 

(or) I1 1 = I2 2 = A constant 

(or) 
1

I


 

Therefore, for a rigid body when the moment of inertia increases, then the angular velocity will 

decrease (and vice versa). If the external net torque is zero. 

1.28. Rotational Energy state of a rigid diatomic molecule 

Let us consider a rigid diatomic molecule having two atoms of masses m1 and m2 connected by 

a weightless rod of length x. This rigid diatomic molecule rotates with an angular velocity  

with respect to an axis through the centre of mass O and is perpendicular to the connecting rod 

as shown in figure. 

 

 

 

 

 

 

We know that the kinetic energy of rotating diatomic molecule is  21
. .

2
K E I          (1) 

We know that the angular momentum of a rotating body is L = I     (or) 
L

I
          (2) 

Substituting equation (2) in (1), we get   
2

2

1
. .

2

L
K E I

I
  

                                                            (or) 

2

. .
2

L
K E

I
                                                    (3) 

We know that the moment of inertia of a rotating diatomic molecule is I =  x2          (4) 

Substituting equation (4) in (3), we get, 

m1 m2 

x1 x2 

x 

O 

 
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Kinetic energy 

2

2
. .

2

L
K E

x
                                                                                         (5) 

Equation (5) represents the classical equation for kinetic energy of a rigid diatomic molecule, 

in which the energy levels are continuous for all possible values of ‘L’. 

But according to quantum mechanics, we know that the energy values are discrete. 

Based on quantum theory, the angular momentum L shall be written as ( 1).L J J       (6) 

Where J is the total angular momentum quantum number and its values are 0, 1, 2, 3,… so on. 

Substituting equation (6) in equation (5), we get 

2

2

( 1).

2
J

J J
E

x


                                         (7) 

This equation (7) represents the rotational kinetic energy of a rigid diatomic molecule, quantum 

mechanically. 

Special cases 

When J = 0, equation (7) becomes, E0 = 0 

When J = 1, equation (7) becomes, 

2 2

1 12 2

2.
( )

2
E or E

x x 
                                            (8) 

When J = 2, equation (7) becomes, 

2 2

2 12 2

2(3). 3
( )

2
E or E

x x 
                                         (9) 

From eqn. (8) and (9), E2 = 3 E1 

When J = 3, equation (7) becomes, 

2 2

2 12 2

3(4). 6
( )

2
E or E

x x 
                                         (10) 

From eqn. (8) and (10), E3 = 6 E1 

Therefore, In general, 1

( 1)

2
J

J J
E E


  

From these results, we can confirm that rotational kinetic energy of rigid diatomic molecule is 

quantized and discrete. 

     

1.29 Gyroscope 

The main principle used in gyroscope is the product of angular momentum which is experienced 

by the torque on the wheel (or) disc is used to produce a gyroscopic precession in the spinning 

wheel. 

Types 

There are different types of gyroscopes 
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(1) Mechanical gyroscope 

(2) Optical gyroscope 

(3) Gas bearing gyroscope 

 

 

 

       

Let us discuss about mechanical gyroscope 

Design 

 The gyroscope consists of four main parts as shown in figure.  

(i) Rotor (ii) Gimbal  (iii) Spinning wheel (iv) Gyroscope frame with base 

In gyroscope the massive rotor is fixed on the supporting rings known as gimbals. The rotor will 

have three degrees of rotation, which will be helpful to alter the following parameters 

(i) Angular velocity () (ii) Angular momentum (L) (iii) Torque () of the rotation motion. 

The above three parameters are inter related. Here the direction of angular momentum act in the 

same direction as that of the rotational axis in symmetrical bodies.  
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Working 

Without spinning 

If there is no spinning of wheel (i.e., L = 0), the free end only move to horizontal plane (XY 

plane) due to gravitational force. 

With spinning 

If there is spinning of wheel, the free end moves towards download direction combined with the 

spin of the wheel about the axis. Hence, a download force W = m g will act at a distance r and 

will produce an angular momentum simultaneously and rotates the spinning wheel along the 

horizontal plane as shown in figure. 

Therefore, gyroscope movement steadily increases depends upon time interval in horizontal 

direction based on the equation given by 

dL

dt
    (or) .dt dL                                                                                           (1) 

From equation (10, we can see that the gyroscope experience a net torque and therefore angular 

momentum must change. Due to constant direction, torque and angular momentum will alter its 

direction without change of magnitude. As a result, the axis of rotation of wheel does not fall. 

Thus the gyroscope maintain its orientation even though the base is moved to any place.   

Applications 

Gyroscopes are used in the following areas: 

1. They are used as compass in boats, aeroplanes, air crafts, etc., 

2. It is used in space craft in order to navigate the space craft to the desired target 

3. It is used to stabilize the ships, satellites, ballistic missiles, etc., 

4. Gyroscopes along with accelerometers are used in smart phones for providing excellent 

motion sensing. 

 

1.30. Twisting couple on a wire 

Consider a cylindrical wire of length l and radius r fixed at one end. It is twisted through an angle 

θ by applying couple to its lower end. Now, the wire is said to be under torsion. Due to elastic 

property of the wire, an internal restoring couple is setup inside the wire. It is equal and opposite 

to the external twisting couple. The cylinder is imagined to consist of a large number of thin 

hollow cylinders.  

Consider one such cylinder of radius x and thickness dx. AB is a line parallel to PQ on the 

surface of this cylinder. As the cylinder is twisted, the line AB is shifted to AC through an angle 

BAC = ф 
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Shearing Strain = ф                                                                                            

Angle of twist at the free end = θ                          

     

From the figure, BC = x θ = l θ (or) 

x

l


 

  

Rigidity modulus (n) = 
𝐒𝐡𝐞𝐚𝐫𝐢𝐧𝐠 𝐒𝐭𝐫𝐞𝐬𝐬

𝐒𝐡𝐞𝐚𝐫𝐢𝐧𝐠 𝐒𝐭𝐫𝐚𝐢𝐧
                                                 

∴Shearing stress = n x Shearing strain = 

nx
n

l


 

                              

But, Shearing stress = 
𝐒𝐡𝐞𝐚𝐫𝐢𝐧𝐠 𝐅𝐨𝐫𝐜𝐞

𝐀𝐫𝐞𝐚 𝐨𝐯𝐞𝐫 𝐰𝐡𝐢𝐜𝐡 𝐭𝐡𝐞 𝐟𝐨𝐫𝐜𝐞 𝐚𝐜𝐭𝐬
                               

Shearing Force = Shearing stress x area over which the force acts                                                       

Area over which the force acts is π(x+dx)2 – πx2 = 2 π x dx  (neglecting dx2)                        

Hence, shearing force 
2

nx
F xdx

l




         

Twisting couple on a wire 

  Shearing force 

22 n
F x dx

l

 


 

∴Moment of this force about the axis PQ of the cylinder = Force x perpendicular distance 

          = 

22 n
x dx x

l

 


 

          = 

32 n
x dx

l

 

 

The moment of the force acting on the entire cylinder of radius r is obtained by integrating the 

above expression between the limits x= r and x = 0 

Hence, twisting couple    

3

0

2
r

n
C x dx

l

 
 

  

4
3

0 0

2 2

4

rr
n n x

x dx
l l

     
  

 


 

∴

4

2

nr
C

l

 


           d      x 

In the above equation, if θ = 1 radian, then, we get 

                 

Twisting couple per unit twist  
C = 

𝝅𝒏𝒓𝟒

𝟐𝒍
 

       Q 

x  θ 
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This twisting couple required to produce a twist of unit radian in the cylinder is called the 

torsional rigidity for material of the cylinder 

 

1.31. Torsional Pendulum 

A torsional pendulum is a pendulum performing torsional oscillations. It is used to find the 

rigidity modulus of the material of the wire and moment of inertia of a given disc 

Description 

A torsional pendulum consists of a metal wire suspended vertically with the upper end fixed. 

The lower end of the wire is connected to the center of a heavy circular disc as shown in figure. 

When the disc is rotated by applying a twist, the wire is twisted is twisted through an angle θ. 

 Then, the restoring couple setup in the wire = Cθ where C is the couple per unit twist. 

If the disc is released, it oscillates with angular velocity 
𝒅𝜽

𝒅𝒕
 in the horizontal plane about the axis 

of the wire. These oscillations are known as torsional oscillations. If 
𝒅𝟐𝜽

𝒅𝒕𝟐  is the angular 

acceleration produced in the disc and I its moment of inertia about the axis of the wire then,  

 Applied couple =I 
𝒅𝟐𝜽

𝒅𝒕𝟐  

At equilibrium position, Applied couple = Restoring couple 

i.e., I 
𝒅𝟐𝜽

𝒅𝒕𝟐  = Cθ  

  (or) 
𝒅𝟐𝜽

𝒅𝒕𝟐  = - 
𝑪

𝐈
θ 

This equation represents simple harmonic motion which shows that angular acceleration is 

proportional to angular displacement θ and is always directed towards the mean position. Hence, 

the motion of the disc being simple harmonic motion,  

The time period of the oscillation is given by T = 2π √
𝐃𝐢𝐬𝐩𝐥𝐚𝐜𝐞𝐦𝐞𝐧𝐭

𝐀𝐜𝐜𝐞𝐥𝐞𝐫𝐚𝐭𝐢𝐨𝐧
 

      = 2π √
𝛉

𝐂 

𝐈
 𝛉

        

     (or)  

 

                 

Determination of Rigidity modulus of the wire 

A circular disc is suspended by a thin wire, whose rigidity modulus is to be determined. The top 

end of the wire is fixed tightly in a vertical support. The disc is then rotated about its center 

through a small angle and set it free. It executes torsional oscillations. The time taken for 20 

T = 2π √
𝐈

 𝐂
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complete oscillations is noted. The experiment is repeated and the mean time period (T) of 

oscillation is found out. 

The length l of the wire is measured. This length is then changed and the experiment is repeated 

for five or six different lengths of wire are measured and tabulated. The disc is removed and its 

mass and diameter are measured 

 

The time period of oscillation is T = 2π √
𝐈

 𝐂
 

 

   (or)    T2 = 4π2 
𝐈

 𝐂
 

 

Substituting couple per twist C = 
𝝅𝒏𝒓𝟒

𝟐𝒍
                                                                             l      

         

T2 = 4π2 
𝐈

𝝅𝒏𝒓𝟒

𝟐𝒍

 

                                                                       

                                  (or)                                            N  m-2   

Where I is moment of inertia of circular disc which is equal to 
𝑴𝑅2

𝟐
 

M- Mass of the circular disc; R – Radius of the disc 

1.32. Double pendulum 

Double pendulum consists of two pendulums in which one pendulum is attached to the end of 

the other pendulum. If the motion is small then the pendulum behaves as a simple pendulum. If 

the motion is large then it behaves as a chaotic system. 

 

Description 

Let us consider a double pendulum suspended to a point O 

which consists of pendulum-1 of mass m1 and pendulum-2 

of mass m2 as shown in figure. Let l1 be the length of 

pendulum-1 and l2 be the length of pendulum-2. If the 

double pendulum is made to oscillate, then both pendulum 

will oscillate at an angle 1 and 2 respectively as shown in 

figure 1.32(a). 

                                                                                                                                                 

Fig. 1.33 (a) 

η    = 
𝟖𝝅𝑰

𝒓𝟒 [
𝑙

𝑇2] 

1 

2 

X O A B 
x2 

x1 x’
 

C 
g 

y1 

y’
 

y2 

-Y D 

1 

2 
m2 

m1 

l2 

l1 
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Derivations 

Let us derive the expressions for the displacement, velocity, kinetic energy, potential energy 

and the Lagrangian of the double pendulum. 

Displacement 

Let x1 (OA) and x2 (OB) be the displacement of pendulum-1 and pendulum-2 respectively, along 

x- axis and let y1 (OC) and y2 (OD) be the displacement of pendulum-1 and pendulum-2 

respectively, along the negative y-axis. Then, from the following figure, we can write 

      1
1

1

sin
x

l
   

(or)      1 1 1sinx l                                                       (1)               

Similarly, from second figure, we can write 

     1
1

1

cos
y

l



                                         Fig. (b) 

(or) 1 1 1cosy l                                                           (2) 

Here, the negative sign indicates the –ve y – direction. Since the 

displacement of pendulum-2 depends on pendulum-1, from figure 1.32, 

we can write the displacement of pendulum-2 along x-axis as 

'

2 1x x x                                                                   (3) 

From fig. (d), we can write                                                                                         Fig. (c) 

'

2

2

sin
x

l
   

(or) '

2 2sinx l                                                        (4) 

Substituting eqn.(4) in (3), we get  

2 1 2 2sinx x l                                                        (5) 

Substituting equation (1) in equation (5), we get                                                      Fig. (d) 

2 1 1 2 2sin sinx l l                                                (6) 

Similarly, from fig 1.33(a), we can write the displacement of pendulum-2 along y-axis as  

'

2 1y y y                                                               (7) 

From Fig. (e), we can write 
'

2

2

cos
y

l



   

(or) '

2 2cosy l                                                    (8) 

O A 

m1 

x1 

l1 1 

O 

C 
m1 

-y1 

B 

m2 

x’ 

l2 2 

m1 

m1 

m2 D 

-y ’ 
l2 
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Substituting equation (8) in equation (7), we get  

2 1 2 2cosy y l                                                   (9) 

Substituting equation (2) in equation (9), we get 

2 1 1 2 2cos cosy l l                                         (10) 

Equations (1), (2), (6) and (10) represents the displacement at various positions of the double 

pendulum. 

Velocity 

Differentiating equation (1) we get, 1 1 1
1

( sin )
x

dx d l
V

dt dt


   

(or) 1
1 1 1cosx

d
V l

dt


  

Using the relation 1
1

d

dt


 , we can write the above equation as  

1 1 1 1cosxV l                                                          (11) 

Differentiating equation (2), we get 

1 1
1

( cos )
y

dy d l
V

dt dt


   

1
1 1 1siny

d
V l

dt


  

(or) 
1 1 1 1sinyV l                                                  (12) 

Differentiating equation (6), we get 

2 1 1 2 2
2

( sin sin )
x

dx d l l
V

dt dt

 
   

(or) 1 2
2 1 1 2 2cos cosx

d d
V l l

dt dt

 
    

(or) 
2 1 1 1 2 2 2cos cosxV l l                              (13) 

Differentiating equation (10) we get 

2 1 1 2 2
2

( cos cos )
y

dy d l l
V

dt dt

  
   

(or) 1 2
2 1 1 2 2sin siny

d d
V l l

dt dt

 
    

(or) 2 1 1 1 2 2 2sin sinyV l l                               (14) 
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Equation (11), (12), (13) and (14) represents the velocity at various positions of the double 

pendulum. 

 

Kinetic energy 

We know, the kinetic energy of the system is 

2
2 2

1

1
( )

2 ii x yi

i

T m V V


   

(or)  2 2 2 2

1 1 2 2

1 1
( ) ( )

2 2
i x y i x yT m V V m V V               (15) 

Substituting equation (11), (12), (13) and (14) in (15), we get  

2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 2 1 1 1 2 2 2 1 1 1 2 2 2

1 1
( cos sin ) ( cos cos ) ( sin sin )

2 2
T m l l m l l l l                    

       (16) 

Equation (16) represents the kinetic energy of the double pendulum. 

Potential energy 

We know that, the potential energy of the system is  

1 1 2 2V m gy m gy       (17) 

Substituting (2) and (10) in (17), we get 

1 1 1 2 1 1 2 2( cos cos cos )V m g l m gl l                     (18) 

Equation (18) represents the potential energy of the double pendulum. 

 

Lagrangian 

The Lagrangian of the double pendulum is L = T – V        (19) 

Substituting equation (16) and (18) in (19), we get 

 

2 2 2 2 2 2

1 1 1 1 1 1 1

2 2

2 1 1 1 2 2 2 1 1 1 2 2 2

1 1 1 2 1 1 2 2

1
( cos sin )

2

1
( cos cos ) ( sin sin )

2

cos ( cos cos )

L m l l

m l l l l

m gl m g l l

   

       

  

  

     

 

                      (20) 

Equation (20) represents the Lagrangian equation for double pendulum. 
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Explanation 

Let us consider a non-linear oscillator which oscillates with different frequencies ( nf ). 

i.e., 
1

n

n

f
T

          (1) 

Where Tn is the time period. 

In non-linear oscillator, the time period will be same (or) it be the least integer fractions such as 

T,  T/2,  T/3, etc.,  

Therefore, we can write, n

T
T

n
       (2) 

Where n is the integer i.e., n = 1, 2, 3,.. 

Substituting equation (2) in equation (1), we get n

n
f

T
                               (3) 

1.33 Introduction to non-linear oscillations

Linear oscillations

A linear Oscillator will oscillate with single frequency in ‘to’ and ‘fro’ (or) up and down 

motion. Its motion will be sinusoidal and periodic in nature.

Examples (1) Oscillation of pendulum system in a watch (2) Damped oscillator

Non-linear Oscillations

A non-linear oscillator will oscillate with different frequencies in the same time internal (or) in 

terms of least integer fractions.

Examples (1) Torsional pendulum (or) double pendulum (2) Damped oscillator 

Characteristics

(1) In non-linear oscillations, the period of oscillations depends on the amplitude of the    

oscillations

(2) For some type of non-linearity, the frequency of the oscillator will change with amplitude.

(3) Therefore, the non-linear oscillations will have multiple steady state solutions.

(4) Non-linear oscillations will have jumping phenomena

(5) The non-linear oscillations will have complex (or) irregular motion

(6) These oscillations will possess internal resonances. i.e., different parts of the system will 

oscillate at different frequencies.
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From equation (3), we can conclude that the frequency of the non-linear oscillatory motion is 

inversely proportional to the time period. For various values of n the frequency of oscillations 

will change and the first four harmonics are shown in figure. 

 

 

 

            

 

Interference 

 

 

 

 

 

QUESTIONS FOR UNIT - 1 

Part- A  (2 marks) 

1. Define multiparticle dynamics. 

The study of dynamics of a system which consists of two or more particle is known as 

multiparticle dynamics. 

 

2. What is centre of mass? 

If the mass of the entire particles in the object is concentrated at a particular point, that 

point is called as centre of mass. 

 

3. Give three examples for motion of centre of mass 

(1) Motion of planets and its satellite 

(2) Projectile Trajectory 

(3) Decay of a Nucleus 

 

4. How centre of mass is determined for rigid body and regular shape? 

Regular objects 

(1) for a thin long rod of uniform cross section and density. Circular plane ring and 

rectangle, the centre of mass is at geometrical centre 

Rigid body 

The centre of mass is a point at a fixed position with respect to the object as a whole. 

Depending on the shape and mass distribution, the centre of mass may or may not be lie 

within the object. 

0 P 

n=3 

n=1 
n=2 

n=3 

f4 

f1, f2, f3 

time 

(1) From figure, we can see that at the mid point, all the harmonics are zero.

(2) The even harmonics will happen for the integer number of cycles and hence it goes positive

(3) The odd harmonics will happen for ½, 3/2, 5/2 etc., number of cycles and hence it goes

  negative.

(4). Thus the motion of the non-linear oscillator will have complex motion.
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5. What is the difference between centre of gravity and centre of mass? 

The centre of gravity of a body is a point, where the whole weight of the body supposed 

to be concentrated 

The centre of mass of a body is a point, where the whole mass of the body is supposed 

to be concentrated. 

For uniformly cross sectional bodies, the centre of gravity coincides with the centre of 

mass. However, they do not coincide in objects whose density is not uniform 

throughout. 

 

6. Define rigid body. 

A body which does not unergo any change in shape or volume when external force are 

applied on it. 

 

7. Write the kinematics of rotational motion 

0 t     

21

2
t t     

2 2

0 2     

 

8. Define moment of inertia of a body 

The property of a body by which it resists change uniform rotational motion is called 

rotational inertia or moment of inertia. 

 

9. Define moment of inertia of a rigid body 

The moment of inertia of a rigid body about a given axis is the sum of products of 

masses of its particles and the square of their respective distances from the axis of 

rotation. i.e., 2

i i

i

I m r  

10. What are the physical significance of moment of inertia 

 The property which opposes the change in rotational motion of the body is 

called the moment of inertia.  

 Greater is moment of inertia of the body about the axis of rotation, greater is 

torque required to rotate the body.  

 The role of moment of inertia in rotational motion is similar to the role of mass 

in linear motion. 

 

11. What is radius of gyration? 

 The radius of gyration is defined as the distance from the axis of rotation to the 

point where the entire mass of the body is assumed to be concentrated. 

 K is called the radius of gyration of the body about the axis of rotation. 

 It is equal to the root mean square distance of all particles from the axis of 

rotation of the body. 
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12. State parallel axis theorem 

It states that moment of inertia with respect to any axis is equal to sum of moment of 

inertia with respect to a parallel axis passing through the centre of mass and the product 

of mass and square of the perpendicular distance between the parallel axis. 

 

13. State perpendicular axis theorem 

The moment of inertia of a thin plane boy with respect to an axis perpendicular to the 

thin plane surface is equal to the sum of the moments of inertia of a thin plane with respect 

to two perpendicular axes lying in the surface of the plane and these three mutually 

perpendicular axes meet at a common point. 

 

14. Define angular momentum 

Angular momentum of a particle is defined as its moment of linear momentum it is given 

by the product of linear momentum and perpendicular distance of its line of action from 

the axis of rotation. It is denoted by L  

 

15. Define torque 

It is defined as moment of force acting on the body in rotational motion with respect to 

the fixed point. 

F r    

 

16. State the law of conservation of angular momentum 

If net external torque does not act on the body, the angular momentum of the body will 

be constant. (angular momentum remains conserved) 

0 0ext

dL

dt
    , therefore, L is a constant. 

This is known as law of conservation of angular momentum. 

 

17. Prove that the rotational kinetic energy is conserved in the torque free motion of a 

rigid body. 

The rotational kinetic energy is = 21

2
I  

For torque free motion, the angular velocity is constant. The moment of inertia is time 

independent parameter, therefore the rotational kinetic energy is conserved if torque is 

not present. 

 

18. What is gyroscope? 

It is a device used for measuring or maintaining orientation and angular velocity. It is a 

spinning wheel or disc in which the axis of rotation (spin axis) is free to assume any 

orientation by itself. 
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19. What are the uses of gyroscopes? 

It is used as stabilizers in ships, boats and aeroplanes. 

It is used as a compass and gyro-compass which is superior than magnetic compass 

It is used in spacecraft in order to navigate the spacecraft to the desired target. 

 

20. What is the torsional pendulum? 

A circular metallic disc suspended using a thin wire that executes torsional oscillation is 

called torsional pendulum. 

 

21. What is double pendulum? 

A double pendulum is a pendulum with another pendulum attached to its end.  

The pendulum behaves like a linear system for small angles.  

When the angles are small in the double pendulum, the system behaves like the linear 

double spring. 

In this case, the motion is determined by simple sine and cosine functions. 

On the other hand for large angles, the pendulum is non-linnear and the phase graph 

becomes much more complex. 

 

22. What is the difference between linear & non-linear oscillations 

A linear oscillator will oscillate with single frequency in to and fro (or) up and down 

motion. Its motion will be sinusoidal and periodic in nature. 

A non linear oscillator will oscillate with different frequencies in the same interval (or) 

in terms of least integer fractions. 

 

Part –B  (16 Marks) 

 

1. Define centre of mass of a system of particles. Derive an expression for centre of mass 

in a one dimensional system and also discuss about centre mass in three dimensional 

system. 

 

2. (i) Discuss the centre of mass of continuous bodies 

(ii) Explain the motion of the centre of mass. 

 

3. Derive an expression for kinetic energy of system of particles  

 

4. (i) Derive an expression for the rotational kinetic energy of a rigid body rotating about a 

fixed axis with an angular velocity  

 

5. State and prove the parallel axes theorem for the moment of inertia of a rigid body. 

 

6. State and prove the perpendicular axes theorem for the moment of inertia of plane lamina. 
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7. Derive an expression for the moment of inertia of a uniform rod. 

(a) About an axis through the centre and perpendicular to its length 

(b) About an axis passing through the end of the rod and perpendicular to its length. 

 

8. Derive an expression for the moment of inertia of a thin ring. 

(a) About an axis through the centre and perpendicular to its plane 

(b) About a diameter. 

(c) About a tangent in the plane of the ring 

 

9. Derive an expression for the moment of inertia of a thin circular disc. 

(a) About an axis through the centre and perpendicular to its plane 

(b) About a diameter. 

 

10. Derive an expression for the moment of inertia of a solid cylinder. 

(a) About an axis through the centre and perpendicular to its length 

(b) About the axis of cylinder. 

 

11. Discuss the moment of inertia of a diatomic molecule. 

 

12. Discuss the rotational energy states of a rigid diatomic molecule. 

 

13. Describe principle, construction and working of gyroscope. Mention its application in 

various fields. 

 

14. Derive an expression for time period of torsion pendulum. Explain how it is used to 

rigidity modulus of a wire. 

 

15. Derive an expression for Lagrangian equation for double pendulum with necessary 

diagram 

 

 


	Untitled

