PH3151 — Engineering Physics / Unit 4 : Basic Quantum Mechanics

Syllabus

Photons and light waves - Electrons and matter waves —Compton effect - The Schrodinger
equation (Time dependent and time independent forms) - meaning of wave function -
Normalization —Free particle - particle in a infinite potential well: 1D,2D and 3D Boxes
Normalization, probabilities and the correspondence principle.

Objectives

Understand the importance of quantum physics.
Knowledge on basic concept of dual nature of light.

Understanding the time dependent and independent wave equation using Schrodinger
equation.

Understanding the role of free particle in 1D, 2D and 3D boxes.

Keywords: Compton effect, Schrodinger equation, particle in 1D,2D and 3D boxes.

4.1 Introduction

The most outstanding development in modern science is the conception of quantum
mechanics. The quantum mechanics is better than Newtonian classical mechanics in
explaining the fundamental physics.

The fundamental concepts were not different from those of every day experience, such
as particle, position, speed, mass, force, energy and even field. These concepts are
referred as classical.

The world of atoms cannot be described and understood with these concepts. For atoms
and molecules, the ideas and concepts used in dealing with optics in day to day life is
not sufficient. Thus, it needed new concepts to understand the properties of atoms.

A group of scientist Neils Bohr W. Heisenberg, E. Schrodinger, P.A.M. Dirac, W. Pauli
and M. Born conceived and formulated these new ideas in the beginning of 20" century.
This new formulation, a branch of physics, was hamed as quantum mechanics.

Limitation of classical mechanics

The classical mechanics deals with macroscopic phenomena which is identical and
distinguishable. But it gives controversial results on certain microscopic studies such as
black body radiation, photoelectric effect, emission of X-rays, etc.,

In classical mechanics, a body which is very small in comparison with other body is
termed as particle whereas in quantum mechanics, the body which cannot be divide
further is termed as particle.
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e The other main difference is the quantized energy state. In classical mechanics, an
oscillating body can assume any possible energy. But on quantum mechanics, an
oscillating body can have only discrete non-zero energy.

Need of quantum mechanics

e Classical mechanics successfully explained the motions of object which are observable
directly or by instruments like microscopes. But it fails to explain the actual behaviour.
Therefore, the classical mechanics cannot used to explain in atomic level, e.g. motion
of an electron in an atom.

e The phenomena of black body radiation, photoelectric effect, emission of X-rays, etc.,
were explained by Max Planck in 1900 by introducing the formula
E=nhv (D)
Wheren=0, 1, 2,...

h = Planck’s constant = 6.626 X 10734 J/s.

e This is known as quantum hypothesis and marked the beginning of modern physics. The

whole microscopic world obeys the above formula.

4.2 Photons and light waves

The wave and particle duality of radiation is easily understood by knowing a difference between
a wave and a particle.

Wave

e A wave originates due to oscillations and it is spread out over a large region of space.
A wave cannot be located at a particular place and mass cannot be carried by a wave.

e Actually, a wave is a spread out disturbance specified by its amplitude A, frequency v,
wavelength A, phase ¢ and intensity I.

e The phenomenon of interference, diffraction and polarization require the presence of
two or more waves at the same time and at the same position. It is very clear that two
or more particles cannot occupy the same position at the same time. So one has to
conclude that radiation behaves like waves.

Particle

e A particle is located at some definite point and it has mass. It can move from one place
to another. A particle gains energy when it is accelerated and it losses energy when it is
slowed down.

e A particle is characterized by mass m, velocity v, momentum p and energy E.

e Spectra of black body radiation, Compton effect, photoelectric effect, etc. could not be
explained on wave nature of radiation. These phenomena established that radiant energy
interacts with matter in the forms of photons or quanta. Therefore, Planck’s quantum
theory came to conclude that radiation behaves like particles.

e Thus, radiation sometimes behaves as a wave and at some other times as a particles.
Now, wave — particle duality of radiation is universally accepted.
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4.3 Wave — particle duality — electrons and matter waves
According to de-Broglie hypothesis, a moving particle is always associated with waves.

Q) Waves and particles are the only two modes through which energy can propagate
in nature

(i) Our universe is fully composed of light radiation and matter

(iii)  Since nature loves symmetry, so matter and waves must be symmetric.

The waves associated with the matter particles are called matter waves or de-Broglie waves.
From Planck’s theory, the energy of a photon of frequency v is given by E=h o (D)
According to Einstein’s mass energy relation, E = mc? 2
Where m — mass of a photon, ¢ — velocity of a photon

Equating (1) and (2), we get

hv = mc? (3)

he _ mc?

A

PR (4)
mc

Since mc=p momentum of photon, then

A== (5)
p

According to de-Broglie hypothesis, the wavelength of de-Broglie wave associated with
any moving particle of mass ‘m’ with velocity ‘v’ is given by

h h
2 arir (6)

In terms of Energy

We know that E = %mv2

2

Multiply m by both sides mE = %mzv

(or)v2mE =mv
(or) V2mE = p

We know that, A =%and hence
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h

\2mE

(or) de-Broglie wavelength A =

In terms of electrons

We know that kinetic energy in terms of electron volt is given by eV = % mv?

2,,2

Multiply m by both sides meV =%m v

(or) <2meV =mv
(or) ¥2meV =p

We know that, A :D and hence

p
. h
or) de-Broglie wavelength A =
(or) g g TV

Properties of Matter
Q) Matter waves are not electromagnetic waves.

(i) Matter waves are new kind of waves in which due to the motion of the charged
particles, electromagnetic waves are produced.

(iii)  Lighter particles will have high wavelength
(iv)  Particles moving with less velocity will have high wavelength

(v)  The velocity of matter wave is not a constant, it depends on the velocity of the
particle.

(vi) If the velocity of the particle is infinite then the wavelength of matter wave is
indeterminate(A=0)

(vii)  The wave and particle aspects cannot appear together

(viii) Locating the exact position of the particle in the wave is uncertain

4.4 Compton Effect

When a beam of monochromatic radiation such as X-rays, y rays etc., of high frequency is allowed to

fall on a fine scatterer, the beam is scattered into two components viz,

(1) One component having the same frequency (or) wavelength as that of the incident radiation so

called unmodified radiation, and

4|RR/Physics/ VCET



PH3151 — Engineering Physics / Unit 4 : Basic Quantum Mechanics

(i) The other component having lower frequency (or) higher wavelength compared to incident
radiation, so called modified radiation.
This effect of scattering is called Compton Effect and the change in wavelength of scattered X —

rays is known as Compton shift.

Thus as a result of Compton scattering, we get (i) Unmodified radiation (ii) Modified radiation and (iii)
a recoil electron.

Theory of Compton Shift

Principle

In Compton scattering the collision between a photon and an electron is considered. Then by applying

the laws of conservation of energy and momentum, the expression for Compton wavelength is derived.
Assumptions

1. The collision occurs between the photon and an electron in the scattering material.
2. The electron is free and is at rest before collision with the incident photon.

Now, let us consider a photon of energy ‘hv’ colliding with an electron at rest of mass m.

During the collision process, a part of energy is given to the electron, which in turn increases the kinetic
energy of the electron and hence it recoils at an angle of @ with mass ‘m’ and velocity ‘v’ as in fig. The
scattered photon moves with an energy hv’ with longer wavelength than hv, at an angle & with respect

to the original direction.

Let us find the energy and momentum components before and after collision process.

Energy before collision
Q) Energy of the incident photon = hv
(i) Energy of the electron at rest = mqc?

Where my is the rest mass energy of the electron.
Total Energy before Collision = hy + moc? (1)

Energy after collision
(i) Energy of the scattered photon = hy/

(i) Energy of the recoil electron = mc?

Where m is the mass of the electron moving with velocity ‘v’
Total energy after collision = hv' + mc? (2)

We know according to the law of conservation of energy,
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Total energy before collision = Total energy after collision

Therefore Equation (1) = Equation (2)

(ie.,) hv+mee2=hv+me?  (or) h(v—v)+mgc?=mc’ 3)
A Y

v
X

Electron at rest E = moc?

C
Recoil electron

X-component of Momentum before collision
. o hv
(i) X-component momentum of the incident photon = —
c
(if) X-component momentum of the electron at rest =0

. hv
.. Total X-Component of momentum before collision = — 4
c

X-component of Momentum after collision

(i) X-component momentum of the scattered photon can be calculated from fig. 4.11

In AOAB c0s@ = MX
hv /c

hv'
.. X-component momentum of the scattered photon = —co0s &
c
(i) X-component momentum of the recoil electron can be calculated from figure.

M
(iif) In AOBC co0s¢=—=
mv
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. X-component momentum of the recoil electron (M) =mvcos¢

- hv
Total X-component of momentum after collision = —C0S & + mv cos ¢ (5)
c

We know according to the law of conservation of momentum,
Total momentum before collision = Total momentum after collision

i.e., Equation (4) = Equation (5)

hv_ h—vcose+ mv cos ¢ (6)
cC ¢

Y-component of momentum before collision

Q) Y-component momentum of the incident photon = 0
(i) Y-component momentum of the electron at rest =0

Total Y-Component of momentum before collision =0 (7)
Y-component of momentum after collision
(i) Y-component momentum of the scattered photon can be calculated from fig. 4.11.

) M
In AOAE, sin@ = —-~
hv /c

hv'

Y-component momentum of the scattered photon= Tsm 0

(if) 'Y-component momentum of the recoil electron can be calculated from figure.

: -M
(iii) In AOCD, sing = —~
mv

Y-component momentum of the recoil electron = —mv sin ¢

hv . .
Total Y-component of momentum after collision = Tsm 6 —mvsin ¢ (8)

According to the law of conservation of momentum,

Total momentum before collision = Total momentum after collision
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i.e., Equation (7) = Equation (8)

O:hTVsine—mvsiwﬁ 9

hv  hv
From equation (6), we can write ="~ TCOSH =mvCos¢

(or) mvccosg = h(v—v cosé) (10)
from equation (9) we can write

hv'sin @ = mevsin ¢ (11)
Squaring equation (10)

h?(v—V cos#)* = m°c’v? cos® ¢

h?v? +hv? cos® @ — 2h*(w cos @) = m°c’v® cos’ ¢ (12)
Squaring equation (11), we get

h?v?sin® @ = m*c®v’sin® ¢ (13)
Equation (12) + (13) =

h?v? +h?v?cos® @+ h*v?sin® @ — 2h*(w cos @) = m*c®v> cos® ¢ + m°c’v>sin® ¢

(or) h*v® +h?? —2h?*(w cos#) = m*c’v® (14)

While adding Eqn. (12) & (13), cos® ¢ +sin’¢ =1 (RHS) and h*v?sin?@+h*?cos® 8 = hv?
(LHS)

Squaring equation (3) on both sides (h(v—Vv') +m,c? =mc?), we have

h*(v-Vv)?+m,’c* +2h(v-v)m,c* = m*c’

h?v® +h’v? —2h*w +m,*c* + 2h(v—v)m,c’ = m’c* (15)
Subtracting equation (15) from equation (14) we get

—2h*w (1—cos ) +2h(v —v )m,c? +my*c* = m’c?(c® —v?) (16)

From the theory of relativity, the relativistic formula for the variation of mass with velocity of the

electron is given by
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2.2
m m,’c
m=-—— (or) m*=—"—
V2 (c"—v%)
-7
c
m?(c® —v*) =m,’c? 17)

Now let us multiply ¢ on both sides of this equation to make it similar to equation (15)
m?c®(c® —v?) = m/’c* (18)
Substitute the value of (18) and (16)

~2h*w (1-cos 6) + 2h(v—v)m,* + m’c* = m °c*

—2h*wW (1-cos @) + 2h(v—v)m,c* + i’ 2" = m e

(or) 2h(v—Vv)m,c® = 2h*w (1—cosb)

(or) ZHA(v—v)m,c? = Zh*w (1-cos6)

(or) (V_.V') __h ~(1—cos0)
W omgc

(or) L.—L= h >~ (L—cos6)

W w mgc
(or) N > (1—cos )

V. v omg
(or) E,—E:L(l—cose)

V. v omgc
(0N 2 —A=—"(1—coso) ( A =9J (19)

mOC \'
(o) AL =—"(1-cos®) (20)
m.C

0

Equation (20) represents the shift in wavelength, i.e. Compton shift which is independent of the
incident radiation as well as the nature of the scattering substance.

Thus the shift in wavelength or Compton shift purely depends on the angle of scattering.
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Special cases
Case (i) when 0 =0; cos 0=1

Equation (18) becomes AL = 0 .This implies that at 6 = 0 the scattering is absent and the out coming
radiation has the same wavelength or frequency as that of the incident radiation. Thus the output will
be a single peak as shown in figure 4.12 (a).

Case (i) when 0 =90 cos 0 =0

Equation (18) becomes A :LC Substituting h, me and C, AL = 0.024244°

(]

This wavelength is called COMPTON WAVELENGTH, which has a good agreement with the
experimental results as shown in fig.4.12(c)

Case (i) when 0 = 180°%; cos 0 = -1

h 2h
Equation (18) b A= 1-(-1) ==L
quation (18) becomes — C[ (-1)] =

0 0o

Substituting h, me and C, A1 = 0.048484°

Thus for 6 = 180° the shift in wavelength is found to be maximum as shown in fig 4.12(d).
For 0=0° For 6=45° for 6=90° For 6=180°
A A A

Un modified

Intensity

Intensity
Intensity
Intensity

A1=0.071]

»

A1 =0.0472

v

v

»
»

Wavelength

EXPERIMENTAL VERIFICATION OF COMPTON EFFECT:

Principle
When a photon of energy ‘hv’ collides with a scattering element, the scattered beam has two
components, viz, one of the same frequency (or) wavelength as that of the incident radiation and the

other has lower frequency (or) higher wavelength compared to incident frequency (or) wavelength. This
effect is called Compton effect and the shift n wavelength is called Compton shift.

Construction

It consists of an X-ray tube for producing X-rays. A small block of carbon C (scattering element) is
mounted on a circular table as in figure. A Bragg’s spectrometer (Bs) is allowed to freely swing in an
arc about the scattering element to catch the scattered photons. Slits S; and S; helps to focus the X-rays

onto the scattering element.
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Working

X-rays of monochromatic wavelength ‘A’ is produced from an X-ray tube and is made to pass through
the slits S; and S,. These X-rays are made to fall on the scattering element. The scattered X-rays are
received with the help of the Bragg’s spectrometer and the scattered wavelength is measured .Now an
ionization energy is replaced at the target to measure the intensity for the corresponding wavelength.

The experiment is repeated for various scattering angles and the scattered wavelengths and the
corresponding intensities are measured. The experimental results are plotted as in figure

In this fig. when the scattering angle 0 = 0°, the scattered radiation peak will be the same as that of the
incident radiation peak ‘A’. Now when the scattering angle is increased, for one incident radiation peak
A of wavelength (L) we get two scattered peaks A and B. Here the peak ‘A’ is found to be of same
wavelength as that of the incident wavelength and the peak B is of greater wavelength than the incident
radiation. The shift in wavelength (or) difference in wavelength (A)) of the two scattered beams is found
to increase with respect to the increase in scattering angle.

At 0=90° A is found to be 0.0236 = 0.02424, which has good agreement with the theoretical results.
Hence this wavelength is called Compton wavelength and the shift in wavelength is called Compton

shift.

L: Lo Scattered ray Bragg X-raiy Spectrometer

( \ X-rays . 5
N = I

Vi < |
LDJ I I \/ / Unscattered X -ray

U

\

7
’

Path of spectrometer

4.5 Schrodinger wave equations

Schrédinger describes the wave nature of a particle in mathematical form and it is known as Schrédinger
wave equation. There are two types: time dependent and independent wave equations.

Schrodinger Time Dependent wave function
A particle can behave as a wave only under motion. So, it must be accelerated by a potential field

= Total energy (E) = Potential Energy (V) + Kinetic Energy
ie,E=V Jr%mv2

2y,2

Im

Vv
o) E=V+—

2
(or) E=V + P

— [Since p = mv]
2m
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2
(or) E‘P:V‘P+2p—m‘l’ o)

According to classical mechanics if ‘X’ is the position of the particle moving with the velocity ‘v’, then
the displacement of the particle at any time ‘t’ is given by

y—pe )

Where o is the angular frequency of the particle

Similarly in quantum mechanics the wave equation ¥ (x, y, z, t) represents the position (x, y, z) of a
moving particle at any time‘t” and is given by

Y(x,Yy,2,t)= Aeiw[t(:]j )

We know that angular frequency o = 2nv

=~ Equation (2) becomes
P(X,Y,z2,t)= Aefiz;r(w{%D 3

We know E =hv (or) v =% 4)

Also, if ‘v’ is the velocity of the particle behaving as a wave,

1
Then the frequency V= Y (or) A (5)
A v A4

Substituting equations (4) & (5) in equation (3), we get

ioa [EL X
Y(x,y,2,t)=Ae ([ h) (AD .
If ‘p’ is the momentum of the particle, then the de-Broglie wavelength
isgivenby A=—=— .
mv p

Substituting equation (7) in (6) we get
¥(x,y,z,t)= re ([%)_(%D

iz—”(Et—px)

(or) Y(x,y,z,t)=Ae b

h L Et—px
Since 1 = gy we can write  W(X,Y,z,t) = Ae WEP 8)
/4

Differentiating equation (8) partially with respect to ‘x” we get
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¥ _ Ae—%(Et—Px) (Ej
OX h

Differentiating once again partially with respect to ‘x” we get

yf:MamMiTZ
OX fi

a Et—px
Since ¥(x,y,z,t) = Ae WP )and i2=-1, we can write

oY -p?
=¥Y(x,y,zt
o7~ Py )( 2 J

0*Y
ox?

(o) PP =" ©

Differentiating equation (8) partially with respect to ‘t> we get

v _ Aefé(Etfpx) (ﬁj
ot 7]

t—px)

(or) EI%P =¥ (x,y,zt)E [ Y(x,y,z,t)= Ae7(E

.. 0¥
(or)EY = IhE (10)

Substituting equations (9) & (10) in equation (1), we get

2 2
iha_ly :V\{f_h_a \f
ot 2m oOX

(or) ih%P :{ _h_a_}}, (11)

2m ox*

Equation (11) represents the one dimensional Schrodinger time dependent wave equation along ‘x’
direction. Also the wave function ¥ (X, y, z, t) depends on both the position (X, y, z) and time (t)

Similarly for three dimensional Schrodinger time dependent wave equation can be written as

2
ih%—?{V—:—vz}w (12)
m
2 2 2
Where V2:6—+ R

__l__
ox* oy o1t

Equation (12) can also rewritten as E¥ = H¥Y
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.. 0
Where E is an energy operator given by E = |ha &

hZ

A v
2m

H is called Hamiltonian operator, given by H =V —

4.6 Schrodinger time independent wave equation

In Schrddinger time dependent wave equation the wave function ‘¥’ depends on time, but in
Schrodinger time independent wave function ‘¥’ does not depend on time & hence it has many
applications.

We know that time dependent wave function

(Et—px)

¥(x,y,z,t)=Ae "
Now, splitting the RHS of this equation in to (i) Time dependent factor & (ii) Time independent factor,
we get

—iEt ipx

Y(X,y,z,t)=Ae " eh

—iEt

(Or) \P(X! Y, Z’t) = Al//e g (1)

ipx
Where ‘y’ represents the time independent wave function. i.e., v =e”

oY = E
Differentiating equation (1) partially with respect to ‘t” we get E =Aye " 7 2
: - : : : ov 2o
Differentiating equation (1) partially with respect to ‘x” we get, o =Ae " 6—””
X X
ol 4 B %y
Differentiating once again partially with respect to ‘x” we get, v =Ae " 5 (3)

We know the time dependent wave equation for 1-dimension is

2 2
iha_‘sz\P_h_a \f
ot 2m oOX

(4)

We can get the Schrddinger time dependent wave equation, just by substituting equations (1),(2) & (3),
which has relation between the time dependent wave function (¥) and time independent wave Function
(y) in equation (4)

Thus, substituting equations (1),(2) & (3) in equation (4) , we get

) —iEt —iE —iEt 2 —iEt aZl//
ihAye " | — =VAye " ——Ae " —
ad [ h } ad 2m ox’
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. 2 A2
(on) ihw['TE}vw W oy

2m o
(on) (=) By ZVV"%?Z/ (or) By -Vy = —%‘ZZT‘{
(o) ‘2"’ - ‘;’“ (Ey—Vy]
(or) zz/z/+i—T[E—v]W:o 5

Equation (5) represents the Schrodinger time independent wave function in one dimension along ‘x’
direction. Here the wave function is independent of time .Similarly for 3 — dimension, the Schrodinger

L L 2m
time independent wave function is given by V2 + ?[ E-V]y=0 (6)
o> o° 0o
Where VZ :—2+—2+—2
ox® oy° oz
4.7 Physical Significance of a wave function [¥]
Wave function

It is the variable quantity that is associated with a moving particle at any position (x, y, z) and at any
time t and it relates the probability of finding the particle at that point and at that time

(i) It gives the relation between the particle and wave nature of the matter statistically
ie, P=ye
(if) Wave function gives the information about the particle behavior
(iii) ¥ is a complex quantity and does not have any physical meaning
Normalization
(iv) |l//|2 =y v is real & positive. This concept is similar to light. In light amplitude may be (+ve)
or (-ve) but the square of intensity of light is +ve & measurable

(V) |w|2 represents the probability density of finding the particle per unit volume which is called
Normalization of a wave function.

(vi)for a given volume dt, the probability of finding the particle is given by Probability
P :I”|t//|2dr where dz = dxxdy xdz

(vii) The probability will have any values between 0 & 1
e If P =0, then there is no particle within the given limits

e If P =1 the particle is definitely present within the given limits
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e IfP=0.7, then there is 70% chance of finding the particle within the given limits. Also
there is 30% of no chance of finding the particle.

4.8 Application of Schrodinger wave equation to a particle (electron) enclosed in a one
dimensional infinite potential well (or) box

Let us consider a particle (electron) of mass ‘m’ moving along x- axis, enclosed in a one dimensional

potential box as shown in figure. Since the walls are of infinite potential the particle does not penetrate
out from the box

V= ot AV=aqa
|
|
|
|

VI Electron
|

I

I I

X =0 : Length (@) Ix=a
|

[
»

Also, the particle is confined between the lengths ‘a’ of the box and has elastic collisions with the

Walls. Therefore the potential energy of the electron inside the box is constant and can be taken as
zero for simplicity

=~ Outside the box and on walls of the box, the potential energy V of the electron is a. Inside the box
the potential energy of the electron is zero

i.e., the boundary conditionis V(x) = Owhen0 < x < a
V(x) = awhen0>x=>a
Since the particle cannot exist outside the box and thus wave functiony=0at0>x > a

Now, Consider the Schrodinger one dimensional time independent wave function

0w 2m

—+—|E-V]|y=0

6X2 hZ [ ]l//
Since the potential energy inside the wall is zero, the particle has kinetic energy alone. Hence it is
called free particle (electron), now the above equation becomes

0w 2m
o
Oy o
(Or) W‘I‘k l//=0 (1)
Where k’ = ZZ]ZE (2)

The second order differential equation of equation (1) has two arbitrary constants
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= The solution of equation (1) is w(X) = Asin kx + B coskx (3)
Where A & B are arbitrary constants which can be found by applying the boundary conditions
Condition (i) at x =0, potential energy V = a. Hence there is no particle at the walls of the box,
Therefore y(x) = 0 Equation (3) becomes 0= Asin0+ Bcos0
=0+B(1)
~B=0

Condition (ii) at x = a, potential energy V =a there is no particles at the walls of box - y(x) =0

Now, Equation (3) becomes 0 = Asinka+ Bcoska

(or) 0= Asinka+0 [*B =0 from condition (i)]

Also A is a Constant & hence A = 0;sinka =0

Thus, we can write as sinnz =0

Comparing these two equations we can write ka =Nz, where ‘n’ is a integer

Nz

(o) k=-- 0
a

Substituting the value of B & k in equation (3)

The wave function in one dimensional box is y(X) = Asin(%j (5)
a
Energy of the particle (electron)
Equation (2) can be rewritten as k* = 2mE ch= h
h? 2r
Ar?
87°mE
(on k*= H (6)
n’z?
Squaring equation (4), we get k° = > (7
a
Equating equation (6) & (7) we get
87’mE n’z?
e &l
n’h?
= The Energy of the particle (electron) E, = ama? (8
ma
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From equation (5) & (8) we can say that for each value of ‘n’ there is energy

Level with the corresponding wave function and hence each E, is said to be Eigen value
corresponding to the Eigen function yn

Energy levels of an electron:

2

The ground energy state can be calculated by substituting n = 1 in equation (8), we get, E, = ama
ma

212 212
Forn=2, E, :82—h2:4E1; Forn=3, E, :s hz =9E,, etc,,
ma ma

Similarly we can calculate ‘n’ number of energy levels by substituting n=1, 2, 3... n.
In general we can write E, =n’E, E =n°E, 9)
From these levels, it is found that each energy level of an electron are discrete

The various Eigen values corresponding to their Eigen function is shown in figure

V=a V =a
E; 4 W, A n=4
- E3 1|J3\//_\ n=3
(@]
E’ Ez /\LHQ =2
Ll
E: I3 =1
0 a

Length of the wall

Normalization of the wave function
It is process by which the probability (P) of finding the particle (electron) inside the box

We know that if (P) = 1 then the particle lies inside the box

a
= Probability of 1 — D box of length ‘a’ is P= j ly?dx =1 (10)
0

[ the particle lies between 0 and | |
Substituting equation (5) in equation (10) we get
a

szAzsinZ@dx=1
. a
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a 1—2005(”7[)()
(onP=A"[ > 2 Jlgx=1

0

_(2znx\ |
Sln( j
(or) P = A2 (5}(1)—& -1

. (27zna
1 ﬁsm( )
(or) P=A 2\ T =1

o R

We know that sinnz =0 .. sin2nt = 0

. . A’a
Equation (11) can be rewritten as - =1

(or) A’ = 2
a

(or) A= \/Z
a

Substituting the value of ‘A’ in equation (5), we get

v, () :\FS"’(@)
a a

Equation (12) is said to be normalized wave function

n=4

n=3

n=2

n=1

n=0

4.9 Particle in a two dimensional potential box (2D)

[Pl 2 E=4
|3 |2 E=3
Y, |2 E=2
AR E=1
E=0

(11)

(12)

The solution of one dimensional box can be extended for a two dimensional potential box. In a two
dimensional potential box, the particle (electron) can move in x and y directions. Therefore instead of
one quantum number n, we have to use quantum numbers ny and ny corresponding the two coordinate

axis (i.e.,) x and y respectively.

Let us consider a particle enclosed in a 2-D potential box of length a and b along x and y axis respectively
as shown in figure. Since the particle inside the 2D box has elastic collision with the walls, the potential
energy of the electron inside the box is constant and can be taken as zero for simplicity.

19| RR/Physics/ VCET



PH3151 — Engineering Physics / Unit 4 : Basic Quantum Mechanics

Therefore, we can say that outside the box and on the wall of the box, the potential energy is o.
Therefore the boundary conditions are

SI.No | Boundary conditions Inference
1 V(x,y)=0when 0<x<a Within this boundary the particle exist and we need
V(X,y) =0when 0 <x<b to find the energy values and wave function
2 V(X y) =awhen 0>x>a In this area the particle does not exist and therefore
V(X, y) = o when 0>x>b the wave function=0
A
To find the wave function of the particle within the boundary y|[V=a =a

Conditions (1). Let us consider the 2-D Schrodinger time independent

Wave equations. b
oy y  2m e— |
ie., + +—J[E-V]w=0 3
axg 8y2 hz [ ]lr// ( ) \
Since V =0 (for a free particle), we can write equation (3) as 3 X g
2 2
CRZACR ALY W, @)
oX" oy° h

Equation (4) is a partial differential equation, in which wis a function of two variables, x and y

We can solve this using method of separation of variables. The solution for equation (4) can be written
as w(x,y) = X(X)Y (y)

Which means  is a function of x and y and is equal to product of 2 functions X and Y. where X is a
function of x only and Y is a function of y only.

Therefore, we can say that the solution for equation (4) is = XY 5)

Differentiating equation (5) partially with respect to x twice, we get

v _y ax
OX dx
0 d?X
L=y =3 (6)
OX dx
Similarly, differentiating equation (5) partially with respect to y twice, we get
W _y avy.
oy dy
0 2y
vox ST @
oy dy

Substituting equations (5), (6) and (7) in equation (4), we get

2 2
X, x4y +2—TEXY=O

Y -
dx? dy?
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d?X d¥ [2m
(o) Y 5+ X & :-{ — E}XY 8)

Dividing equation (8) by XY on both sides we get

2 2
1O% 10y o
X dx® Y dy h
(on) idZX 1 dZY [kz } (10)
X dx? Y dy?
2m P
Where ?E =K, +ky (11)

In equation (10), LHS is independent of each other and is equal to a constant in RHS. Therefore, we
can equate each term of LHS to each constant in RHS

Therefore, we can write

1d°X , dX
= or

Sk —k2X (0 (12)
2 2
%‘ZTZ?kj (on) ZY =—k}Y (o) d*y +k2Y 0 (13)

Equations (12) & (13) represents the differential equations in x and y co-ordinates. The solution for
equation (13) can be written as

X(x) = A sink x+ B, cosk,x (14)

Where A and B are arbitrary constants, which can be found by applying boundary conditions.
Boundary conditions

())Whenx=0: X =0

Equation (14) becomes, 0=0 + By

Therefore Bx=0 (15)
(il)whenx=a; X =0,

Equation (14) becomes 0 = Aysin ky a.

Since Aq = 0 (because if Ax =0, then X(x) becomes zero and the particle is not there)
~.sinka=0

We know that sinn,z =0

Comparing the above two equations we can write, K,.a =n,z

N

(or) k, = (16)

Substituting equations (15) & (16) in equation (14) we get
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X (x)=Asin ()

N, X
a

Equation (17) represents the un-normalized wave function
Normalization

Equation (17) can be normalized by integrating it within the boundary conditions limit. i.e., 0 to a

a 2
Therefore, we can write I|X (x)| dx =1
0

a 2
(or) IAfsin2¥dx =1
0

Aa 2
Solving the above equation, we get > =1 (or) A =,/— (18)
a

X
a

2 .
Then, equation (17) becomes X (X) = \/:sm (19)
a

Similarly by solving equation (13) with the boundary condition 0 to b, we can write

_ [2, 7Y
Y(y)_\/;sm . (20)

Eigen functions

The complete wave function for equation (4) can be written as
w(x,y) = X(X)Y(y)
Substituting equations (19) and (20) in the above equation, we get

2 _nzx 2 . N7y

=—=SINn —=SIn
Yon, \/g a \/g b

= 2 sin o7
My Jab o a

Equation (21) represents the Eigen function for an electron in a 2D-box.

n
sin y;zy (21)

Eigen values

. .. 2m
From Equation (11) we can write - E=k;+k;

h2
- E =ﬂ[kf+kj] (22)

From equation (16), we can write kx2 =
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Similarly, ky2 ==

h2 2 n 27Z2
Substituting these equation in (22), we get .. E = T

2m

(o) ~.E h’xz? (n? n?

o) ,E=—ni—| X+
47°x2m| a® b?

2 2
(or) Enxny Shm( +%J (23)

This the energy eigen values of an electron in a 2D-rectangular box.
Square box

For a square boxa=b

2

ha2 (nx2 + nyz) (24)

Therefore, we can write equation (23) as Eany =
Corresponding normalized wave function of an electron in a square box can be obtained from equation

2 2 n,z
(2l)as .y, , = /—x sin X sjn 2L Y
o a a a a

2. nzxx_. N7xy
Therefore, ..y, n, = —sin—-*—
oa a a

(25)

These equations (24) and (25) can lead to several combination of two quantum numbers (ny and ny)
leads to different energy eigen values and eigen functions.

Example
- 2h?
M ifny=ny=1; E; :W (26)
. o 2 . X .
The corresponding wave function is y,; = —sin 7% sin zy (27)
a a a
@ if n=1; ny=2; E,=E, = Sh* (28)
X ’ y ’ 12 21 8ma2
. L 2 . gwX . 2
The corresponding wave function is ;, =—sin X gin Y
a a a
W, =§5|n2—sm7[—y (29)
a a a

Thus, from equations (26) & (28) we can say that the energy Eigen values are discrete and are
guantized as shown in figure
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8h? (nx,ny—>(2.2) Non -Degenerate
Bz = 8ma? |Z
)
0
2 @Y
5h & .
BialBos = Gz Vs [ Degenerat
e 2h? LU (nx,ny) * (1.1)  Non -Degenerate
17 8ma?

v

4.10. Particle in a three dimensional potential box

The solution of one-dimensional potential box can be extended for a three dimensional potential box.
In a three dimensional potential box, the particle (electron) can move in any direction in space. Therefore
instead on one quantum number we have to use three quantum number ny, ny and n, corresponding to
the three coordinate axis (i.e.,) X, y and z respectively.

Let us consider a particle enclosed in a 3 — dimensional potential box of length a, b and c long x, y nd
z axis respectively. Since particle inside the 3D box has elastic collisions with the walls, the potential
energy of the electron inside the box is constant and can be taken as zero for simplicity.

Therefore, we can say that outside the box and on the wall of the box, the potential energy is a.
Therefore, boundary conditions are:

SI.No | Boundary conditions Inference
V(X,¥,z)=0when 0<x<a Within this boundary the particle exist and we need

1 V(X,y,z)=0when0<x<b to find the energy values and wave function
V(X,y,z)=0when0<x<c

2 V(X,y,z) =awhen 0>x>a In this area the particle does not exist and therefore
V(X,Yy,2) =awhen 0>x>b the wave function=0

V(x,y,z2)=0when0<x<c

To find the wavefunctions of the particle within the boundary conditions (1), let us consider the 3-D
Schrodinger wave equation

oy N oy N oy 2m

ie., o o +?[E—V]w:0 ()

Since V =0 (for a free particle), we can write equation (3) as

2 2 2
81/:+81/;+61/2/+2_TEW:O 4)
OX oy 0z fi
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Equation (4) is a partial differential equation, in which is a function of three variables, x, y and z

We can solve this using method of separation of variables. The solution for equation (4) can be written
as (XY, z) = X(X)Y(y)Z(z)

Which means wis a function of X, y, z and is equal to product of 3 functions X, Y and Z. where X is a
function of x only, Y is a function of y only and Z is a function of z only.

Therefore, we can say that the solution for equation (4) is = XYZ 5)

Differentiating equation (5) partially with respect to x twice, we get

W _yy X
OX dx
k% d?X
=YZ 6
Ox? dx? ©)
Similarly, differentiating equation (5) partially with respect to y twice, we get
Wy, dY
oy dy
2 2
oV _xz d ! 7)
oy dy
Similarly, differentiating equation (5) partially with respect to z twice, we get
W _ w92
oz dz
2 2
Z
a—‘/z’ _xy d = ()
oy dz
Substituting equations (5), (6) and (7) in equation (4), we get
2 2 2
vz 9 X xz 8wy 92 2M ey g
dx dy dz®= &
2 2 2
(or)YZd)2(+XZdZ+XYd§:— Z—TE XYZ 9)
dx dy dz h
Dividing equation (8) by XYZ on both sides we get
1d*X 1d% 14d?*z 2m
———to—+t-—F=-|—=E (10)
X dx* Y dy* Z dz h
(or)idzx +£dZY+£dZY——[k2+k2+k2] (11)
X dx* Y dy* Z dz? o
Where 2n12E =k?+kZ+k? (12)
h X y z
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In equation (10), LHS is independent of each other and is equal to a constant in RHS. Therefore, we
can equate each term of LHS to each constant in RHS

Therefore, we can write

1 d*X d-X d?X

2
X ae =—kZ (or) e =—k2X (or) e +kZX =0 (13)
1d% d?y d?y
?d—y2=—k5 (or) 0y =—kJY (or) v +k;Y =0 (14)
1d%z d’z d’z
o =—k? (or) 7 =-k’Z (or) i +k’Z2 =0 (15)

Equations (12) , (13) and (14) represents the differential equations in x, y and z co-ordinates. The
solution for equation (13) can be written as

X (x) = A sink x+ B, cosk,x (16)
Where A and B are arbitrary constants, which can be found by applying boundary conditions.
Boundary conditions

())Whenx=0: X =0

Equation (14) becomes, 0=0 + By

Therefore Bx=0 a7
(il)whenx=a; X =0,

Equation (14) becomes 0 = Axsin ky a.

Since Ax = 0 (because if Ax =0, then X(x) becomes zero and the particle is not there)
~.sinka=0

We know that sinn,z =0

Comparing the above two equations we can write, K,.a =n,z

(o) k, = 2% (18)
a

Substituting equations (15) & (16) in equation (14) we get

X (x) = A_sin (19)

N TX
a

Equation (17) represents the un-normalized wave function

Normalization

Equation (17) can be normalized by integrating it within the boundary conditions limit. i.e., 0 to a
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2

a
Therefore, we can write “X (x)| dx=1
0

, N2X

(or) .([AA sin de:l

Aa 2
Solving the above equation, we get —~ = 1 (or) A = 2 (20)

n X
a

2 .
Then, equation (17) becomes X (X) = \/gsm (21)

Similarly by solving equations (13) and (14) with the boundary condition 0 to b and 0 to c, we can
write

_ [2 gy
Y(y) = bsm . (22)
Z(z) = /gsin N7z (23)
c c

Eigen functions

The complete wave function for equation (4) can be written as
w(xy,2) = X(X)Y(¥)Z(2)
Substituting equations (19) and (20) in the above equation, we get

2 . nzx 2 . nyﬂyis. n,zz

Z

o =—=sin—2—~—=sin in
Vn T2 a db b e c
n
W, = 22 sin X gjn 7Y iy 772 (24)
e Jabe a b c

Equation (24) represents the Eigen function for an electron in a 3D-box.

Eigen values

From Equation (11) we can write Zh—T E =k +kj+k?
hZ

S E=—[kE +k] k] (25)
2m

nX

From equation (16), we can write K > =
a

2_2 2_2

. n’z
Similarly, k2 =—=——, k,* ==
b C
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hz 2 n2ﬂ2 nzﬁz
Substituting these equation in (25), we get .. E_2m az + 2+

b? C
h?xz? (n? n? n?
(or) " E=—F——| ZH+5+%5
a2 2

4% % 2m b> ¢
h? n? n?
E +—L+L 26
(or) E, Sm[ o’ CZ] (26)

This the energy eigen values of an electron in a 3D-rectangular box.
Cubical box
For a cubical box,a=b =c,

2

Therefore, we can write equation (26) as E, 0 8
© 8ma’

(nZ+n?+n?) (24)

Corresponding normalized wave function of an electron in a cubical box can be obtained from

. 2 2 2 . nzax_. Nzy . nzxz
equation (24) as .. ¥/, , , :,/—x—x—sm X~ sin —~L—sin -
v Va a a a a a

8 . nxx . Nzxy . nrxz
sy, o=, [—sin—2X—=sin X —sin -~ (27)
n,n,n, 3
y a a a a

These equations (26) and (27) can lead to several combination of three quantum numbers (ny, ny, and
n,) leads to different energy eigen values and eigen functions.

Example
o 2h?
@ ifnk=ny=n,=1; E, = Bl (28)
. o 8 X . 7wy . 7l
The corresponding wave function is ,,, = ,|— sin —sm sin— (29)
a’ a a a
. I 6h?
() if ne=1; ny=1; n,=2; By, = = Eznm (30)
[ 8 X 2r1z
The corresponding wave function is ,,, = ,[— sin Z2sin 2L 7y sin <22
a a a a
_ 8 sin”Xsin Lysm—
Vin =@ g a a
’ 2 nz
Vo = 83 sin % sin Y sin 22 (31)
a a a a

The energy values for various set of quantum number combination is shown in figure. Therefore, we
can say that the energy Eigen values are discrete and are quantized.
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(Nx.Ny, Nz)—» (2,2,2) Non -Degenerate state

=P Degenerate state

Degenerate state

Non -Degenerate state

\
A ﬂv_a AVZO‘
= =a
b
a AV B—
C
i/
A
12h? Y222
222 = 8ma?
, | Wen Wi & Y113 (311) 7]
E311/E131/E113 = % (nx,ny,nz)é:(]_:%]_)
N (113)
(221) |
2 | W21 Y212 & Y22
E321/E212/E122 = 8?:(12 = (Nx,Ny,Nz)\—» (212) —>
& (122) |
0
N /.(211)—
6h? Wiz Y121 & Yona
E112/E121/E211 = 8maz (nx,ny,nz) (121) —p Degenerate state
(112)
Wi
Eipy =83h22 (nx.ny,nz) — (111)
ma

Degeneracy and Non —

Degeneracy

v

Degeneracy

It is seen from equations (30) & (31) for several combination of quantum numbers we have same energy
eigen values but different eigen functions. Such states and energy levels are called Degenerate states.
The three combination of quantum numbers (112), (121) and (211) which gives same eigen value but
different eigen functions are called 3 — fold degenerate state.

Non — degeneracy

For various combinations of quantum number if we have same energy eigen value and same eigen
function (one) then such states and energy levels are called non — degenerate state.
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4.11. Probabilities and correspondence principle

According to Neils Bohr, any new theory (or) any new description of nature must agree with the old
theory, wherein we get correct results. This conceptual thinking exactly matches witht e classical theory
and guantum theory.

Correspondence principle

According to correspondence principle “For large value of principal quantum number ‘n’ the quantum
mechanics merges with classical mechanics” i.e., the classical theory and quantum theory will have
same results.

In other words, we can say that the quantum mechanics under certain limits like high energy (or) high
mass (or) high length (or) higher quantum number etc. it approaches classical mechanics.

Quantum mechanics = certain limits = Classical mechanics
Example

For a particle enclosed in one dimensional potential well, according to correspondence principle, the
guantum theory merges with the classical theory, for large value of n and inturn for large value of
Energy values (E).

Using Eigen value (Proof 1)

Let us discuss how the quantum mechanics merges with classical mechanics for a particle enclosed in a
one dimensional potential well. We know that the energy eigen value for a particle in the n™ level,

212
. . . ) . nh
enclosed in a one dimensional potential well is E, = 5 (1)
8ma
. . . n+1)°h?
The energy eigen value for a particle in (n+1)" level is E, ., = (8—)2 (2)
ma

Let us find the difference (or) change in energy from (n+1)" energy level to n™ energy level
Therefore, change in energy AE =E_,, —E, 3)
Substituting equation (1) and equation (2) in equation (3) we get

(n+1)*h* n*h’
8ma? 8ma?

AE =

2

(n+1)>-n?)

h
AE =
(on) 8ma?

2

(or) AE = (n*+2n+1-n?)

8ma?

2

(or) AE =

s (2n+1) 4)

To find E
E
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2
AE —h > (2n+1)
From equations (4) & (1), we get — =°Ma
E n°h
8ma’
AE (2n+1) _2n 1 AE 2 1
or) —= = — 4+ — of) —=—+4+— 5
()E n’ nznz()E n n? ©)
For large values of ‘n’i.e., If nis oo, equation (5) becomes AE :3+i2
E o o
AE 1
or) —=—
(on E o
AE
—=0 6
E (6)

The above equation (6) indicates that for large values of n the difference between the energy levels
approaches zero and hence we can say that for large values of n, the energy values are continuous rather
than discrete.

En
Continuous energy levels

X- axis
X=0 X=a
Length of the well

Using Eigen function (Proof 2)
We can also verify the same using the Eigen functions by finding probability of wave function.
Probabilities

We know that the wave function for a particle enclosed in a one dimensional potential well is

2 . nzx
W, =, |=sin—= (7)
a a

The probability of the wave function for n™ state shall be written as |l//n|2
Forn=1
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For ground state, i.e., for n = 1, we get the normalised wave function in which the probability of
finding the particle is maximum at middle

Forn=2

For the first excited state i.e., n = 2, we get the normalised wave function in which the probability of
finding the particle is minimum at the middle.

Forn =10

For the 9™ excited state, we get the normalized wave function in which the probability of finding the
particle increases in all areas of the well.

Forn =20

For higher values of energy such as (Ezo), (Eso), i.e., n = 20, 30, etc., the probability of finding the
particle is same (or) constant throughout the particular energy level.

"//20 ’
A A
‘Wm 2

N AVAVAVAVAVAVAVAVAVAY,

E, o n=2
E1 |W1‘2 n=1
X=0 X=a

Length of wall

Classical Proof

If we see the energy level of the particle classically, then the probability of finding that particle is
constant. Therefore, my merging the quantum wave functions for n = 20 and classical wave functions
for n = 20, we can see that the probability of finding the particle in a quantum wave function is almost
the same as that of the probability of finding the particle in a classical wave function.

Conclusion
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Thus for large values of n (or) for large value of energies (E), the normalized quantum wavefunctions
merges with classical wave functions. i.e., Quantum mechanics merges with classical mechanics.
Hence correspondence principle is proved.

Part — A Question and Answer

1.  What is Compton Wavelength?
The shift in wavelength corresponding to the scattering angle of 90° is called Compton wavelength.

—34
(1 - cos90°) = 262610 = 0.024244°

W.K.T Compton shift (AL) = 511 X101 x3:10°8

moc
2. State De-Broglie’s Hypothesis (or) explain the concept of wave nature? (or) What is meant
by matter waves? Give the origin of concept?
The light exhibit dual nature such as a particle & wave. De-Broglie suggested that an electron,

which is a particle, can also behave as a wave and exhibit the dual nature. Thus the wave associated
with the material particle are called matter waves .. De — Broglie wavelength (1) = %

3. What is the physical significance of a wave function?
(i) The probability of finding the particle in space at any given instant of time is characterized by

a function v ( x,y,z) called wave function
(ii) It relates the particle and the wave statistically
(i) It gives the information about the particle behavior
(iv) Itisa complex quantity
(v) wy" is a probability density of the particle , which is real and positive.
4. What is meant by photon? Give any two properties?
Photons are discrete energy values in the form of small quanta’s of definite frequency (or) wavelength.
Properties:
(1) They does not have any charge and they will not intense
(i) The energy & momentum of the photon is given by E = hv and p = mc

5. Define Compton effect and Compton shift?

When a photon of energy “hv” collides with a scattering element. The scattering beam has two
components as one of them have same frequency (or) wavelength as that of incident radiation and the
other have lower frequency (or) higher wavelength . This effect is called Compton effect. The shift in

wavelength due to scattered x- rays is called Compton shift.
6. Define Eigen value and Eigen function?

. . . . . . Zp?
Energy of a particle moving in one dimensional box of width ‘a’ is E,, = h.fer each value of ‘n’

there is a energy level. Where Ej is called Eigen value.
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b

For every quantum state, there is a corresponding wave function ‘y,’ called Eigen function given

2 . nmx
by y,, = \/; sin—-
7. What is meant by degenerate (or) non — degenerate state?

For various combinations of quantum numbers if we get some Eigen value at different eigen functions,
then it is called degenerate state.

For various combinations of quantum numbers if we get same eigen values & eigen functions, then it is
called non-degenerate state.

8. What are the properties of matter waves?
(ix) Matter waves are not electromagnetic waves.

x) Matter waves are new kind of waves in which due to the motion of the charged particles,
electromagnetic waves are produced.

(xi) Lighter particles will have high wavelength
(xii)  Particles moving with less velocity will have high wavelength
(xiii)  The velocity of matter wave is not a constant, it depends on the velocity of the particle.

(xiv) If the velocity of the particle is infinite then the wavelength of matter wave is
indeterminate(A=0)

(xv)  The wave and particle aspects cannot appear together

(xvi)  Locating the exact position of the particle in the wave is uncertain.

9. For afree particle moving with a one dimensional potential box, the ground state energy
cannot be zero, why?
For a free particle moving within a one dimensional potential box, when n=0 the wave function is

zero for all values of x i.e., it is zero even within the potential box. This would mean that the particle

is not present within the box. Therefore the state with n=0 is not allowed.
10. How de-Broglie justified his concept?
Our universe is fully composed of light and matter

Nature loves symmetry. If radiation like light can act like wave and particle, then material particles

(Eg: proton, neutron, etc.,) should also act as particle and wave

Every moving particle has always associated with a wave.
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Part—-B

1. Define Compton effect. Derive an expression for the wavelength of the scattered photon. Also
briefly explain the experimental verification

2. Derive Schrodinger time dependent and independent wave equation for one dimensional box.

3. Arrive Schrodinger wave equation and apply the same to determine the particle in 1-D box and
arrive the corresponding Eigen values and functions.

4. Derive the time independent wave equation and apply the same for a particle in a 2-D
rectangular box to obtain the corresponding Eigen values and eigen functions.

5. Derive the time independent wave equation and apply the same for a particle in a 3-D
rectangular box to obtain the corresponding Eigen values and eigen functions.

6. State prove correspondence principle using Eigen values and Eigen functions.
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