VELAMMAL COLLEGE OF ENGINEERING & TECHNOLOGY, MADURAI

DEPARTMENT OF PHYSICS

SEMESTER - II

E

		Т	Т	D	C
21PH103	PHYSICS FOR INFORMATION SCIENCE		1	1	
(Applicable to Computer Branch Students (CSE & 11)) 3 0 0 3					
OBJECTIVES:					
• To make the students understand the importance in studying electrical properties of					
materials.					
• To enable the students to gain knowledge in semiconductor physics.					
• To instill knowledge on magnetic properties of materials.					
• To establish a sound grasp of knowledge on different optical properties of materials,					
optical displays and applications.					
• To inculcate an idea of significance of nano structures quantum confinement ensuing					
nano device applications and quantum computing					
nano ao noo approviono ana daanaan oompaano.					
UNIT I	ELECTRICAL PROPERTIES OF MATERIALS				9
Classical free electron theory - Expression for electrical conductivity - Thermal conductivity,					
expression - Wiedemann-Franz law - Success and failures - Electrons in metals - Particle in					
a three dimensional box - Degenerate states - Fermi- Dirac statistics - Density of energy					
states - Electron effective mass - Concept of hole.					
UNIT II	SEMICONDUCTOR PHYSICS				9
Intrinsic Semiconductors - Energy band diagram - Direct and indirect band gap					
semiconductors - Carrier concentration in intrinsic semiconductors - extrinsic					
semiconductors - Carrier concentration in n-type & p-type semiconductors - Variation of					
carrier concentration with temperature - Variation of Fermi level with temperature and					
impurity concentration - Carrier transport in Semiconductor: random motion, drift, mobility					
and diffusion - Hall effect and devices - Ohmic contacts - Schottky diode.					
UNIT IIIMAGNETIC PROPERTIES OF MATERIALS9					
Magnetic dipole moment - Atomic magnetic moments - Magnetic permeability and					
susceptibility - Magnetic material classification: diamagnetism - Paramagnetism -					
Ferromagnetism - Antiferromagnetism - Ferrimagnetism - Ferromagnetism: origin and					
exchange interaction saturation magnetization and Curie temperature - Domain Theory- M					
versus H behaviour - Hard and soft magnetic materials - Examples and uses - Magnetic					
principle in computer data storage - Magnetic hard disc (GMR sensor).					
UNIT IVOPTICAL PROPERTIES OF MATERIALS9					
Classification of optical materials - carrier generation and recombination processes -					
Absorption emission and scattering of light in metals, insulators and semiconductors					
(concepts only) - photo current in a P-N diode - solar cell - LED - Organic LED - Laser					
diodes - Optical data storage techniques.					
UNIT VNANODEVICES AND QUANTUM COMPUTING9					
Introduction - Quantum confinement - Quantum structures: quantum wells, wires and dots -					
Band gap of nanomaterials. Tunneling - Single electron phenomena: Coulomb blockade -					
Resonant- tunneling diode - single electron transistor - quantum cellular automata - Quantum					
system for information processing - quantum states - classical bits - quantum bits or qubits -					
CNOT gate - multiple qubits - quantum gates - advantage of quantum computing over					
classical computing (qualitative).					
	ΤΟΤΑ	L: 45	5 PE	RIO	DS

OUTCOMES: At the end of the course, learners will be able to:

- **CO1:** Gain knowledge on classical and quantum electron theories, and energy band structures. (K2)
- **CO2:** Acquire knowledge on basics of semiconductor physics and its applications in various devices. (K2)
- **CO3:** Get knowledge on magnetic properties of materials and their applications in data storage. (K2)
- **CO4:** Have the necessary understanding on the functioning of optical materials for optoelectronics (K2)
- **CO5:** Understand the basics of quantum structures and their applications and basics of quantum computing. (K2)

TEXT BOOKS:

- 1. Jasprit Singh, "Semiconductor Devices Basic Principles", Wiley (Indian Edition), 2007.
- 2. S.O. Kasap, Principles of Electronic Materials and Devices, McGraw-Hill Education (Indian Edition), 2020.
- 3. Parag K. Lala, Quantum Computing: A Beginner's Introduction, McGraw-Hill Education (Indian Edition), 2020.

REFERENCES

- 1. Charles Kittel, Introduction to Solid State Physics, Wiley India Edition, 2019.
- 2. Y.B.Band and Y.Avishai, Quantum Mechanics with Applications to Nanotechnology and Information Science, Academic Press, 2013.
- 3. V.V.Mitin, V.A. Kochelap and M.A.Stroscio, Introduction to Nanoelectronics, Cambridge Univ.Press, 2008.

4. G.W. Hanson, Fundamentals of Nanoelectronics, Pearson Education (Indian Edition) 2009.

5. B.Rogers, J.Adams and S.Pennathur, Nanotechnology: Understanding Small Systems, CRC Press, 2014.

WEB REFERENCE

- 1. https://onlinecourses.nptel.ac.in/noc20_mm17/preview
- 2. <u>https://onlinecourses.nptel.ac.in/noc21_ee59/preview</u>
- 3. <u>https://onlinecourses.nptel.ac.in/noc21_ee59/preview</u>