VELAMMAL COLLEGE OF ENGINEERING & TECHNOLOGY, MADURAI

DEPARTMENT OF PHYSICS

SEMESTER - II

21PH105 P	PHYSICS FOR ELECTRICAL ENGINEEIRNG	L	Т	Р	С
	THISTES FOR ELECTRICAL ENGINEERING	3	0	0	3
OBJECTIVES:					
• To explain the basics of dielectric materials and insulation.					
• To illustrate the electrical properties of materials including free electron theory, applications of					
quantum mechanics and magnetic materials.					
• To infer knowledge on physics of semiconductors, determination of charge carriers and device applications.					
• To summarize the different optical properties of materials, optical displays and applications.					
• To translate the significance of nano structures, quantum confinement to nano device applications.					
UNIT I DIELECTRIC MATERIALS AND INSULATION 9					9
Matter pola	arization and relative permittivity: definition - Dipole moment and	d pol	arizat	ion ve	ector
Polarization mechanisms: electronic, ionic, orientation, interfacial and total polarization - Frequency					
dependence - Local field and Causius-Mossotti equation - Dielectric constant and dielectric loss -					
Gauss's law and boundary conditions - Dielectric strength, introduction to insulation breakdown in					
gases, liquids and solids - Capacitor materials - Typical capacitor constructions - Piezo and pyroelectric					
crystals (qualitative)					
UNIT II	ELECTRICAL AND MAGNETIC PROPERTIES OF MAT	FERL	ALS		9
Classical free electron theory - Expression for electrical conductivity - Thermal conductivity, expression					
- Quantum free electron theory: tunneling - Degenerate states - Fermi-Dirac statistics - Density of energy					
states - Electron effective mass - concept of hole. Magnetic materials: dia, para and ferromagnetic effects					
- Domain theory of ferromagnetism - Hysteresis - Quantum interference devices - GMR devices.					
UNII III Intrincic Son	SEMICONDUCTORS AND TRANSPORT PHYSICS	miaa	advat		9 Jonnion
concentration in intrinsic semiconductors Extrinsic semiconductors Carrier concentration in a type &					
p-type semiconductors - Variation of carrier concentration with temperature - Carrier transport in					
Semiconductors: Drift mobility and diffusion - Hall effect and devices - Obmic contacts - Schottky					
diode.					
UNIT IV	OPTICAL PROPERTIES OF MATERIALS				9
Classification of optical materials - Optical processes in semiconductors: optical absorption and					
emission, charge injection and recombination, optical absorption, loss and gain. Optical processes in					
quantum wells - Optoelectronic devices: light detectors and solar cells - light emitting diode - laser diode					
- optical processes in organic semiconductor devices - excitonic state - Electro-optics and nonlinear					
optics: Modulators and switching devices.					
UNIT V	NANO DEVICES				9
Density of states for solids - Significance between Fermi energy and volume of the material - Quantum					
confinement - Quantum structures - Density of states for quantum wells, wires and dots - Band gap of					
nanomaterials - Tunneling - Single electron phenomena - Single electron Transistor. Conductivity of					
metallic nanowires - Ballistic transport - Quantum resistance and conductance - Carbon nanotubes:					

Properties and applications - Spintronic devices and applications - Optics in quantum structures - quantum well laser.

TOTAL: 45 PERIODS

OUTCOMES: At the end of the course, learners will be able to:

CO1: Explain the basics of dielectric materials and insulation.

CO2: Infer the electrical and magnetic properties of materials and their applications.

CO3: Relate the semiconductor physics and functioning of semiconductor devices.

CO4: Summarize the optical properties of materials and working principles of various optical devices.

CO5: Translate the importance of nanotechnology in nano devices.

TEXT BOOKS:

1. S.O. Kasap, "Principles of Electronic Materials and Devices", Fourth Edition (Indian Edition), McGraw Hill Education, 2020.

- 2. R.F. Pierret, "Semiconductor Device Fundamentals", First Edition (Indian Edition) Pearson, 2006.
- 3. G.W.Hanson. "Fundamentals of Nanoelectronics", First Edition (Indian Edition) Pearson
- Education, 2009.

REFERENCES

- 1. Laszlo Solymar, Walsh, Donald, Syms and Richard R.A., "Electrical Properties of Materials", Indian Edition, Oxford University Press, 2015.
- 2. Jasprit Singh, "Semiconductor Optoelectronics: Physics and Technology", First Edition (Indian Edition), McGraw-Hill Education, 2019.
- 3. Charles Kittel, "Introduction to Solid State Physics", Seventh Edition, (Indian Edition), Wiley, 2019.
- 4. Mark Fox, "Optical Properties of Solids", Standard Edition, Oxford University Press, 2001.
- 5. Parag K. Lala, "Quantum Computing: A Beginner's Introduction", First Edition (Indian Edition), McGraw-Hill Education, 2020.