VELAMMAL COLLEGE OF ENGINEERING & TECHNOLOGY, MADURAI

DEPARTMENT OF PHYSICS

SEMESTER - II

21PH106 PHYSICS FOR MECHANICAL ENGINEERING	L	Т	Р	С	
		3	0	0	3
OBJECTIVES: • To explain the basics of crystallography and its importance in studying materials properties. • To illustrate the electrical properties of materials including free electron theory, applications of quantum mechanics and magnetic materials. • To infer the knowledge on physics of semiconductors, determination of charge carriers and device applications • To summarize the knowledge on different optical properties of materials, optical displays and applications • To translate the significance of nano structures, quantum confinement in nano device applications. UNIT I CRYSTALLOGRAPHY 9 Crystal structures: BCC, FCC and HCP - Directions and planes - Linear and planar densities - Crystal imperfections- Edge and screw dislocations - Grain and twin boundaries - Burgers vector and elastic strain energy - Slip systems, plastic deformation of materials - X-ray diffraction - Braggs law - Powder X-ray diffraction.					
	ELECTRICAL AND MAGNETIC PROPERTIES OF MATERL	ALS			9
 Quantum free electron theory: Tunneling – degenerate states - Fermi-Dirac statistics - Density of energy states - Electron effective mass - Concept of hole. Magnetic materials: dia, para and ferromagnetic effects Domain theory of ferromagnetism - Hysteresis behaviour - quantum interference devices - GMR devices. UNIT III SEMICONDUCTORS AND TRANSPORT PHYSICS 9 Intrinsic Semiconductors - Energy band diagram - direct and indirect band gap semiconductors - Carrier concentration in intrinsic semiconductors - extrinsic semiconductors - Carrier concentration in n-type & p-type semiconductors - Variation of carrier concentration with temperature - Carrier transport in Semiconductors: Drift, mobility and diffusion - Hall effect and devices - Ohmic contacts - Schottky 					
diode.					
UNIT IV	OPTICAL PROPERTIES OF MATERIALS				9
Classification of optical materials - Optical processes in semiconductors: optical absorption and emission, charge injection and recombination, optical absorption, loss and gain. Optical processes in quantum wells - Optoelectronic devices: light detectors and solar cells - light emitting diode - laser diode - optical processes in organic semiconductor devices - excitonic state - Electro-optics and nonlinear optics: Modulators and switching devices.					
UNIT V	NANOELECTRONIC DEVICES				9
Quantum confinement - Quantum structures - quantum wells, wires and dots - Zener - Bloch oscillations - Resonant tunneling - Quantum interference effects - Mesoscopic structures - Single electron phenomena - Single electron Transistor. Semiconductor photonic structures - 1D, 2D and 3D photonic crystal Photo processes - Spintronics - Carbon nanotubes: properties and applications. TOTAL: 45 PERIODS					
1 UG Curriculum Board of studies – Chairman (Choice Based Credit System)					

OUTCOMES: At the end of the course, learners will be able to:

CO1: Explain the basics of crystallography and its importance for various material properties.

CO2: Infer the electrical and magnetic properties of materials and their applications.

CO3: Relate the semiconductor physics and functioning of semiconductor devices.

CO4: Summarize the optical properties of materials and working principles of various optical devices.

CO5: Translate the importance of functional nanoelectronic devices.

TEXT BOOKS:

- 1. V. Raghavan, "Materials Science and Engineering: A First Course", Sixth Edition, Prentice Hall India Learning Private Limited, 2015.
- 2. S.O. Kasap, "Principles of Electronic Materials and Devices", Fourth Edition (Indian Edition), Mc-Graw Hill Publication, 2018.

3. Jasprit Singh, "Semiconductor Devices: Basic Principles", First Edition (Indian Edition), Wiley Publication, 2007.

4. Jasprit Singh, "Semiconductor Optoelectronics: Physics and Technology", First Edition (Indian Edition) Mc-Graw Hill Publication, 2019.

5. G.W. Hanson, "Fundamentals of Nanoelectronics", Indian Standard Edition, Pearson Education, 2009. **REFERENCES**

- 1. R. Balasubramaniam, "Callister's Materials Science and Engineering", Second Edition (Indian Edition), Wiley Publication, 2014.
- 2. Wendelin Wright and Donald Askeland, "Essentials of Materials Science and Engineering", First Edition, CL Engineering Publishers, 2013.
- 3. Robert F. Pierret, "Semiconductor Device Fundamentals", Standard Edition, Pearson Education, 2006.
- 4. Pallab Bhattacharya, "Semiconductor Optoelectronic Devices", First Edition, Pearson Education, 2017.
- 5. Ben Rogers, Jesse Adams and Sumita Pennathur, "Nanotechnology: Understanding Small Systems", First Edition, CRC Press, 2017.